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PREFACE

The following course is intended to give, in as simple

a way as possible, the essentials of synthetic projective

geometry. While, in the main, the theory is developed

along the well-beaten track laid out by the great masters

of the subject, it is believed that there has been a slight

smoothing of the road in some places. Especially will

this be observed in the chapter on Involution. The

author has never felt satisfied with the usual treatment

of that subject by means of circles and anharmonic

ratios. A purely projective notion ought not to be based

on metrical foundations. Metrical developments should

be made there, as elsewhere in the theory, by the

introduction of infinitely distant elements.

The author has departed from the century-old custom

of writing in parallel columns each theorem and its

dual. He has not found that it conduces to sharpness

of vision to try to focus his eyes on two things at once.

Those who prefer the usual method of procedure can,

of course, develop the two sets of theorems side by side
;

the author has not found this the better plan in actual

teaching.

As regards nomenclature, the author has followed

the lead of the earlier writers in English, and has called

the system of lines in a plane which all pass through a

point a pencil of rays instead of a bundle of rays, as later

writers seem inclined to do. For a point considered

369803



iv PROJECTIVE GEOMETRY

as made up of all the lines and planes through it he

has ventured to use the term point system, as being

the natural dualization of the usual term j>/<tnr tyttem.

He has also rejected the terra foci of an involution, and

has not used the customary terms for classifying invo-

lutions — hyperbolic involution, elliptic involution and

parabolic involution. He has found that all these terms

are very confusing to the student, who inevitably tries

to connect thera in some way with the conic sections.

Enough examples have been provided to give the

student a clear grasp of the theory. Many are of suffi-

cient generality to serve as a basis for individual in-

vestigation on the part of the student. Thus, the third

example at the end of the first chapter will be found

to be very fruitful in interesting results. A corre-

spondence is there indicated between lines in space and

circles through a fixed point in space. If the student

will trace a few of the consequences of that corre-

spondence, and determine what configurations of circles

correspond to intersecting lines, to lines in a plane, to

lines of a plane pencil, to lines cutting three skew lines,

etc., he will have acquired no little practice in picturing

to himself figures in space.

The writer has not followed the usual practice of

inserting historical notes at the foot of the page, and

has tried instead, in the last chapter, to give a con-

secutive account of the history of pure geometry, or, at

least, of as much of it as the student will be able to

appreciate who has mastered the course as given in the

preceding chapters. One is not apt to get a very wide

view of the history of a subject by reading a hundred
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biographical footnotes, arranged in no sort of sequence.

The writer, moreover, feels that the proper time to

learn the history of a subject is after the student has

some general ideas of the subject itself.

The course is not intended to furnish an illustration

of how a subject may be developed from the smallest

possible number of fundamental assumptions. The

author is aware of the importance of work of this sort,

but he does not believe it is possible at the present

time to write a book along such lines which shall be of

much use for elementary students. For the purposes of

this course the student should have a thorough ground-

ing in ordinary elementary geometry so far as to include

the study of the circle and of similar triangles. No solid

geometry is needed beyond the little used in the proof

of Desargues' theorem (25), and, except in certain

metrical developments of the general theory, there will

be no call for a knowledge of trigonometry or analytical

geometry. Naturally the student who is equipped with

these subjects as well as with the calculus will be a

little more mature, and may be expected to follow the

course all the more easily. The author has had no

difficulty, however, in presenting it to students in the

freshman class at the University of California.

The subject of synthetic projective geometry is, in

the opinion of the writer, destined shortly to force its

way down into the secondaiy schools ; and if this little

book helps to accelerate the movement, he will feel

amply repaid for the task of working the materials into

a form available for such schools as well as for the

lower classes in the university.
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The material for the course has been drawn from

many sources. The author is chiefly indebted to the

classical works of Reye, Cremona, Steiner, Poncelet, and

Von Staudt. Acknowledgments and thanks are also

due to Professor Walter C. Eells, of the U.S. Naval

Academy at Annapolis, for his searching examination

and keen criticism of the manuscript ; also to Professor

Herbert Ellsworth Slaught, of The University of Chicago,

for his many valuable suggestions, and to Professor

B. M. Woods and Dr. H. N. Wright, of the University

of California, who have tried out the methods of

presentation in their own classes.
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AN ELEMENTARY COURSE IN

SYNTHETIC PROJECTIVE

GEOMETRY

CHAPTER I

ONE-TO-ONE CORRESPONDENCE

1. Definition of one-to-one correspondence. Given any

two sets of individuals, if it is possible to set up such

a correspondence between the two sets that to any

individual in one set corresponds one and only one

individual in the other, then the two sets are said to

be in one-to-one correspondence with each other. This

notion, simple as it is, is of fundamental importance

in all branches of science. The process of counting is

nothing but a setting up of a one-to-one correspond-

ence between the objects to be counted and certain

words, ' one,'
r

two,' ' three,' etc., in the mind. Many
savage peoples have discovered no better method of

counting than by setting up a one-to-one correspondence

between the objects to be counted and their fingers.

The scientist who busies himself with naming and

classifying the objects of nature is only set-ting up a

one-to-one correspondence between the objects and cer-

tain words which serve, not as a means of counting the

l
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objects, but of listing them in a convenient way. Thus

he may be able to marshal and array his material in

such a way as to bring to light relations that may

exist between the objects themselves. Indeed, the whole

notion of language springs from this idea of one-to-one

correspondence.

2. Consequences of one-to-one correspondence. The

most useful and interesting problem that may arise in

connection with any one-to-one correspondence is to

determine just what relations existing between the

individuals of one assemblage may be carried over to

another assemblage in one-to-one correspondence with

it. It is a favorite error to assume that whatever holds

for one set must also hold for the other. Magicians are

apt to assign magic properties to many of the words

and symbols which they are in the habit of using, and

scientists are constantly confusing objective things with

the subjective formulas for them. After the physicist

has set up correspondences between physical facts and

mathematical formulas, the
M
interpretation " of these

formulas is his most important and difficult task.

3. In mathematics, effort is constantly being made

to set up one-to-one correspondences between simple

notions and more complicated ones, or between the well-

explored fields of research and fields less known. Thus,

by means of the mechanism employed in analytic geom-

etry, algebraic theorems are made to yield geometric

ones, and vice versa. In geometry we get at the proper-

ties of the conic sections by means of the properties

of the straight line, and cubic surfaces are studied by

means of the plane.
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4. One-to-one correspondence and enumeration. If a

one-to-one correspondence has been set up between the

objects of one set and the objects of another set, then

the inference may usually be drawn that they have the

same number of elements. If, however, there is an

infinite number of individuals in

each of the two sets, the notion

of counting is necessarily ruled

out. It may be possible, never-

theless, to set up a one-to-one

correspondence between the ele-

ments of two sets even when the

number is infinite. Thus, it is easy to set up such a

correspondence between the points of a line an inch

long and the points of a line two inches long. For let

the lines (Fig. 1) be AB and A'B'. Join AA' and BB',

and let these joining lines meet in >$'. For every point C
on AB a point C' may be found

on A'B' by joining C to S and

noting the point C where CS
meets A'B'. Similarly, a point C
may be found on AB for any

point C on A'B'. The corre-

spondence is clearly one-to-one,

but it would be absurd to infer

from this that there were just

as man}* points on AB as on A'B'. In fact, it would

be just as reasonable to infer that there were twice as

many points on A'B' as on AB. For if we bend A'B'

into a circle with center at S (Fig. 2), we see that for

every point C on AB there are two points on A'B'. Thus
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it is seen that the notion of one-to-one correspondence

is more extensive than the notion of counting, and

includes the notion of counting only when applied to

finite assemblages.

5. Correspondence between a part and the whole of an

infinite assemblage. In the discussion of the last para-

graph the remarkable fact was brought to light that it

is sometimes possible to set the elements of an assem-

blage into one-to-one correspondence with a part of

those elements. A moment's reflection will convince

one that this is never possible when there is a finite

number of elements in the assemblage. Indeed, we

may take this property as our definition of an infinite

assemblage, and say that an infinite assemblage is one

that may be put into one-to-one correspondence with

part of itself. This has the advantage of being a positive

definition, as opposed to the usual negative definition of

an infinite assemblage as one that cannot be counted.

6. Infinitely distant point. We have illustrated above

a simple method of setting the points of two lines into

one-to-one correspondence. The same illustration will

serve also to show how it is possible to set the points

on a line into one-to-one correspondence with the lines

through a point. Thus, for any point C on the line AB
there is a line SC through S. We must assume the line

AB extended indefinitely in both directions, however, if

we are to have a point on it for every line through S;

and even with this extension there is one line through

S, according to Euclid's postulate, which does not meet

the line AB and which therefore has no point on

AB to correspond to it. In order to smooth out this
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discrepancy we are accustomed to assume the existence

of an infinitely distant point on the line AB and to assign

this point as the corresponding point of the exceptional

line of S. With this understanding, then, we may say

that we have set the lines through a point and the

points on a line into one-to-one correspondence. This

correspondence is of such fundamental importance in

the study of projective geometry that a special name is

given to it. Calling the totality of points on a line a

point-roiv, and the totality of lines through a point a

pencil of rays, we say that the point-row and the pencil

related as above are hi perspective position, or that they

are perspectively related.

7. Axial pencil ; fundamental forms. A similar cor-

respondence may be set up between the points on a

line and the planes through another line which does not

meet the first. Such a system of planes is called an

axial pencil, and the three assemblages— the point-row,

the pencil of rays, and the axial pencil— are called

fundamental forms. The fact that they may all be set

into one-to-one correspondence with each other is ex-

pressed by saying that they are of the same order. It is

usual also to speak of them as of the first order. We
shall see presently that there are other assemblages

which cannot be put into this sort of one-to-one cor-

respondence with the points on a line, and that they

will very reasonably be said to be of a higher order.

8. Perspective position. We have said that a point-

row and a pencil of ra}-s are in perspective position if

each ray of the pencil goes through the point of the

point-row which corresponds to it. Two pencils of rays
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are also said to be in perspective position if correspond-

ing rays meet on a straight line which is called the

axis of perspectivity. Also, two point-rows are said to

be in perspective position if corresponding points lie on

straight lines through a point which is called the center

of perspectivity. A point-row and an axial pencil are

in perspective position if each plane of the pencil goes

through the point on the point-row which corresponds

to it, and an axial pencil and a pencil of rays are in

perspective position if each ray lies in the plane which

corresponds to it; and, finally, two axial pencils are

perspectively related if corresponding planes meet in

a plane.

9. Projective relation. It is easy to imagine a more

general correspondence between the points of two point-

rows than the one just described. If we take two

perspective pencils, A and B, then a point-row a per-

spective to A will be in one-to-one correspondence with

a point-row b perspective to 2?, but corresponding points

will not, in general, lie on lines which all pass through

a point. Two such point-rows are said to be projectively

related, or simply projective to each other. Similarly,

two pencils of rays, or of planes, are projectively related

to each other if they are perspective to two perspective

point-rows. This idea will be generalized later on. It is

important to note that between the elements of two

projective fundamental forms there is a one-to-one cor-

respondence, and also that this correspondence is in

general continuous; that is, by taking two elements of

one form sufficiently close to each other, the two corre-

sponding elements in the other form may be made to
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approach each other arbitrarily close. In the case of

point-rows this continuity is subject to exception in the

neighborhood of the point "at infinity."

10. Infinity-to-one correspondence. It might be inferred

that any infinite assemblage could be put into one-to-one

correspondence with any other. Such is not the case,

however, if the correspondence is to be continuous,

between the points on a line and the points on a plane.

Consider two lines which lie in different planes, and

take m points on one and n points on the other. The

number of lines joining the m points of one to the

n points of the other is clearly mn. If we symbolize

the totality of points on a line by oo, then a reasonable

symbol for the totality of lines drawn to cut two lines

would be co2. Clearly, for every point on one line there

are oo lines cutting across the other, so that the corre-

spondence might be called oo-to-one. Thus the assem-

blage of lines cutting across two lines is of higher

order than the assemblage of points on a line ; and as

we have called the point-row an assemblage of the first

order, the system of lines cutting across two lines ought

to be called of the second order.

11. Infinitudes of different orders. Now it is easy to

set up a one-to-one correspondence between the points

in a plane and the system of lines cutting across two

lines which lie in different planes. In fact, each line of

the system of lines meets the plane in one point, and

each point in the plane determines one and only one line

cutting across the two given lines— namely, the line of

intersection of the two planes determined by the given

point with each of the given lines. The assemblage
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of points in the plane is thus of the same order as

that of the lines cutting across two lines which lie in

different planes, and ought therefore to be spoken of

as of the second order. We express all these results

as follows:

12. If the infinitude of points on a line is taken as

the infinitude of the first order, then the infinitude of

lines in a pencil of rays and the infinitude of planes in

an axial pencil are also of the first order, while the

infinitude of lines cutting across two "skew" lines, as

well as the infinitude of points in a plane, are of the

second order.

13. If we join each of the points of a plane to a point

not in that plane, we set up a one-to-one correspondence

between the points in a plane and the lines through

a point in space. Thus the infinitude of lines through a

point in space is of the second order.

14. If to each line through a point in space we make

correspond that plane at right angles to it and passing

through the same point, we see that the infinitude of

planes through a point in space is of the second order.

15. If to each plane through a point in space we

make correspond the line in which it intersects a given

plane, we see that the infinitude of lines in a plane is of

the second order. This may also be seen by setting up

a one-to-one correspondence between the points on a

plane and the lines of that plane. Thus, take a point S

not in the plane. Join any point M of the plane to S.

Through S draw a plane at right angles to MS. This

meets the given plane in a line m which may be taken as

corresponding to the point M. Another very important
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method of setting up a one-to-one correspondence be-

tween lines and points in a plane will be given later, and

many weighty consequences will be derived from it.

16. Plane system and point system. The plane, con-

sidered as made up of the points and lines in it, is called

a plane system and is a fundamental form of the second

order. The point, considered as made up of all the lines

and planes passing through it, is called a point system

and is also a fundamental form of the second order.

17. If now we take three lines in space all lying in

different planes, and select I points on the first, m points

on the second, and n points on the third, then the total

number of planes passing through one of the selected

points on each line will be Imn. It is reasonable, there-

fore, to symbolize the totality of planes that are deter-

mined by the go points on each of the three lines by

go3, and to call it an infinitude of the third order. But

it is easily seen that every plane in space is included in

this totality, so that the totality of planes in space is an

infinitude of the third order.

18. Consider now the planes perpendicular to these

three lines. Every set of three planes so drawn will

determine a point in space, and, conversely, through

every point in space may be drawn one and only one

set of three planes at right angles to the three given

lines. It follows, therefore, that the totality of points

in space is an infinitude of the third order.

19. Space system. Space of three dimensions, con-

sidered as made up of all its planes and points, is then

a fundamental form of the third order, which we shall

call a space system.
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20. Lines in space. If we join the twofold infinity

of points in one plane with the twofold infinity of

points in another plane, we get a totality of lines of

space which is of the fourth order of infinity. The

totality of lines in space gives, then, a fundamental form

of the fourth order.

21. Correspondence between points and numbers. In

the theory of analytic geometry a one-to-one corre-

spondence is assumed to exist between points on a

line and numbers. In order to justify this assumption

a very extended definition of number must be made

use of. A one-to-one correspondence is then set up be-

tween points in the plane and pairs of numbers, and

also between points in space and sets of three numbers.

A single constant will serve to define the position of

a point on a line ; two, a point in the plane ; three, a

point in space ; etc. In the same theory a one-to-one

correspondence is set up between loci in the plane and

equations in two variables ; between surfaces in space

and equations in three variables ; etc. The equation of

a line in a plane involves two constants, either of which

may take an infinite number of values. From this it

follows that there is an infinity of lines in the plane

which is of the second order if the infinity of points on

a line is assumed to be of the first. In the same way

a circle is determined by three conditions ; a sphere by

four ; etc. We might then expect to be able to set Dp

a one-to-one correspondence between circles in a plane

and points, or planes in space, or between spheres and

lines in space. Such, indeed, is the case, and it is

often possible to infer theorems concerning spheres
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from theorems concerning lines, and vice versa. It is

possibilities such as these that give to the theory of

one-to-one correspondence its great importance for the

mathematician. It must not be forgotten, however, that

we are considering only continuous correspondences. It

is perfectly possible to set up a one-to-one correspond-

ence between the points of a line and the points of a

plane, or, indeed, between the points of a line and the

points of a space of any finite number of dimensions, if

the correspondence is not restricted to be continuous.

22. Elements at infinity. A final word is necessary

in order to explain a phrase which is in constant use in

the study of projective geometry. We have spoken of

the " point at infinity " on a straight line— a fictitious

point only used to bridge over the exceptional case

when we are setting up a one-to-one correspondence

between the points of a line and the lines through a

point. We speak of it as "a point" and not as "points,"

because in the geometry studied by Euclid we assume

only one line through a point parallel to a given line.

In the same sense we speak of all the points at infinity

in a plane as lying on a line, "the line at infinity,"

because the straight line is the simplest locus we can

imagine which has only one point in common with any

line in the plane. Likewise we speak of the " plane at

infinity," because that seems the most convenient way
of imagining the points at infinity in space. It must not

be inferred that these conceptions have any essential

connection with physical facts, or that other means of

picturing to ourselves the infinitely distant configura-

tions are not possible. In other branches of mathematics,
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notably in the theory of functions of a complex vari-

able, quite different assumptions are made and quite

different conceptions of the elements at infinity are used.

As we can know nothing experimentally about such

things, we are at liberty to make any assumptions we

please, so long as they are consistent and serve some

useful purpose.

PROBLEMS

1. Since there is a threefold infinity of points in space,

there must be a sixfold infinity of pairs of points in space.

Each pair of points determines a line. Why, then, is there

not a sixfold infinity of lines in space ?

2. If there is a fourfold infinity of lines in Bpace, why

is it that there is not a fourfold infinity of planes through

a point, seeing that each line in space determines a plane

through that point ?

3. Show that there is a fourfold infinity of circles in

space that pass through a fixed point. (Set up a one-to-one

correspondence between the axes of the circles and lines

in space.)

4. Find the order of infinity of all the lines of space

that cut across a given line ; across two given lines ; across

three given lines ; across four given lines.

5. Find the order of infinity of all the spheres in space

that pass through a given point ; through two given points
;

through three given points ; through four given points.

6. Find the order of infinity of all the circles on a

sphere ; of all the circles on a sphere that pass through a

fixed point ; through two fixed points ; through three fixed

points ; of all the circles in space ; of all the circles that

cut across a given line.
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7. Find, the order of infinity of all lines tangent to a

sphere ; of all planes tangent to a sphere ; of lines and

planes tangent to a sphere and passing through a fixed point.

8. Set up a one-to-one correspondence between the series

of numbers 1, 2, 3, 4, • • • and the series of even numbers

2, 4, 6, 8 • •. Are we justified in saying that there are just

as many even numbers as there are numbers altogether ?

9. Is the axiom " The whole is greater than one of its

parts " applicable to infinite assemblages ?

10. Make out a classified list of all the infinitudes of the

first, second, third, and fourth orders mentioned in this

chapter.



CHAPTER II

RELATIONS BETWEEN FUNDAMENTAL FORMS IN ONE-

TO-ONE CORRESPONDENCE WITH EACH OTHER

23. Seven fundamental forms. In the preceding chap-

ter we have called attention to seven fundamental forms :

the point-row, the pencil of rays, the axial pencil, the

plane system, the point system, the space system, and

the system of lines in space. These fundamental forms

are the material which we intend to use in building up

a general theory which will be found to include ordinary

geometry as a special case. We shall be concerned, not

with measurement of angles and areas or line seg-

ments, as in the study of Euclid, but in combining and

comparing these fundamental forms and in "generating''

new forms by means of them. In problems of con-

struction we shall make no use of measurement, either

of angles or of segments, and except in certain special

applications of the general theory we shall not find it

necessary to require more of ourselves than the ability

to draw the line joining two points, or to find the point

of intersections of two lines, or the line of intersection

of two planes, or, in general, the common elements of

two fundamental forms.

24. Projective properties. Our chief interest in this

chapter will be the discovery of relations between

the elements of one form which hold between the

14
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corresponding elements of any other form in one-to-one

correspondence with it. We have already called atten-

tion to the danger of assuming that whatever relations

hold between the elements of one assemblage must also

hold between the corresponding elements of any assem-

blage in one-to-one correspondence with it. This false

assumption is the basis of the so-called "proof by

analogy" so much in vogue among speculative theorists.

When it appears that certain relations existing between

the points of a given point-row do not necessitate the

same relations between the corresponding elements of

another in one-to-one correspondence with it, we should

view with suspicion any application of the " proof by

analogy " in realms of thought where accurate judg-

ments are not so easily made. For example, if in a

given point-row u three points, A, B, and C, are taken

such that B is the middle point of the segment AC,

it does not follow that the three points A\ B', C
in a point-row perspective to u will be so related.

Relations between the elements of any form which do

go over unaltered to the corresponding elements of

a form projectively related to it are called projective

relations. Relations involving measurement of lines or

of angles are not projective.

25. Desargues's theorem. We consider first the fol-

lowing beautiful theorem, due to Desargues and called

by his name.

If two triangles, A, B, C and A', B', C, are so situated

that the lines AA', BB', and C'C all meet in a point, then

the pairs of sides AB and A'B', BC and B'C, CA and

C'A' all meet on a straight lute, and conversely.
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Fig. :5

Let the lines AA', BH', and C<" meet in the point .1/

(Fig. 8). Conceive of the figure as in space, so that

M is the vertex of a trihedral angle of which the given

triangles are plane sections. The lines AB and A'B' are

in the same plane and must meet when produced, their

point of intersection

being clearly a point

ill the plane of each

triangle and there-

fore in the line of

intersection of these

two planes. Call this

point P. By similar

reasoning the point

Q of intersection of

the lines BC and

B'C' must lie on this same line as well as the point 22

of intersection of CA and C'A'. Therefore the points

P, Q, and R all lie on the same line m. If now we con-

sider the figure a plane figure, the points P, Q, and R
still all lie on a straight line, which proves the theorem.

The converse is established in the same manner.

26. Fundamental theorem concerning two complete

quadrangles. This theorem throws into our hands the

following fundamental theorem concerning two com-

plete quadrangles, a complete quadrangle being defined

as the figure obtained by joining any four given points

by straight lines in the six possible ways.

Given two complete quadrangles, K, L, M, X and

K', L\ M\ X', so related that KL, K'L', MX, M'X' all

meet in a point A ; LM, L'M', XK, X' K' all meet in a
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point C; and LX, L'N' inert in a point B on ih<> line

A C ; then the lines KM and K'M' also meet in a point I)

on the line AC.

For, by the converse of the last theorem, KK', LL',

and NN' all meet in a point S (Fig. 4). Also LL', MM,
and iVTV' meet in a point, and therefore in the same

point & Thus A'A'', LL', and MM' meet in a point,

and so, by Desargues's theorem itself, A, B, and D are

on a straight line.

27. Importance of the theorem. The importance of

this theorem lies in the fact that, A, B, and C being

given, an indefinite number of quadrangles A'', L', M',N'

may be found such that K'L' and M'N' meet in A, K'N'

and L'M' in C, with L'N' passing through B. Indeed,

the lines AK' and AM' may be drawn arbitrarily

through A, and any line through B may be used to

determine L' and N'. By joining these two points to

C the points K' and M' are determined. Then the line
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joining K' and M', found in this way, must pass

through the point D already determined by the quad-

rangle K, L, M, iV. The three points A, B, <\ given M
order, serve thus to determine a fourth point D.

28. In a complete quadrangle the line joining any

two points is called the opposite side to the line joining

the other two points. The result of the preceding

paragraph may then be stated as follows

:

Given three points, A, B, C, in a straight line, if a

pair of opposite sides of a complete quadrangle pass

through Ay
and another pair through C, and one of the

remaining two sides goes through B, then the other of

the remaining two sides will go through a fixed point

which does not depend on the quadrangle employed.

29. Four harmonic points. Four points, A, B, C, D,

related as in the preceding theorem are called four

harmonic points. The point D is called the fourth har-

monic of B with respect to A and C. Since B and I) play

exactly the same role in the above construction, B is

also the fourth harmonic of D with respect to A and C.

B and D are called harmonic conjugates with respect to

A and C. We proceed to show that A and C are also

harmonic conjugates with respect to B and D— that is,

that it is possible to find a quadrangle of which two

opposite sides shall pass through B, two through D,

and of the remaining pair, one through A and the other

through C.

Let O be the intersection of KM and LN (Fig. 5).

Join to A and C. The joining lines cut out on the

sides of the quadrangle four points, F, Q, i**, S. ( lonsidex

the quadrangle P, A', Q, 0. One pair of opposite sides
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Fig

passes through A, one through C, and one remaining side

through D; therefore the other remaining side must

pass through B. Similarly, RS passes through B and

PS and QB pass

through I). The

quadrangle P, Q,

B, S therefore

lias two opposite

sides through B,

two through D,

and the remain-

ing pair through

A and C. A and

C are thus harmonic conjugates with respect to B and D.

We may sum up the discussion, therefore, as follows

:

30. If A and C are harmonic conjugates with respect

to B and D, then B and D are harmonic conjugates with

respect to A and C.

31. Importance of the notion. The importance of the

notion of four harmonic points lies in the fact that it

is a relation which is carried over from four points in

a point-row u to the four points that correspond to

them in any point-row u! perspective to u.

To prove this statement we construct a quadrangle

K, L, M, AT such that KL and MN pass through A, KN
and LM through C, LN through B, and KM through D.

Take now any point S not in the plane of the quad-

rangle and construct the planes determined by S and

all the seven lines of the figure. Cut across this set of

planes by another plane not passing through & This

plane cuts out on the set of seven planes another
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quadrangle which determines four new harmonic points,

A', B', C, D', on the lines joining S to A, B, C, D. But

S may be taken as any point, since the original quad-

rangle may be taken in any plane through A, B, C, D;
and, further, the points A', B', C', D' are the intersection

of SA, SB, SC, SD by any line. We have, then, the

remarkable theorem:

32. If any point is joined to four harmonic points, and

the four lines thus obtained are cut by any fifth, the four

points of intersection are again harmonic.

33. Four harmonic lines. We are now able to extend

the notion of harmonic elements to pencils of rays, and

indeed to axial pencils. For if we define four harmonic

rays as four rays which pass through a point and which

pass one through each of four harmonic points, we have

the theorem

Four harmonic lines are cut by any transversal in four

harmonic points.

34. Four harmonic planes. We also define four har-

monic planes as four planes through a line which pass

one through each of four harmonic points, and we may
show that

Four harmonic planes are cut by any plane not passing

through their common line in four harmonic lines, and also

by any line in four harmonic points.

For let the planes a, /3, 7, 8, which all pass through

the line g, pass also through the four harmonic points

A, B, C, D, so that a passes through A, etc. Then it is

clear that any plane ir through A, B, C, D will cut out

four harmonic lines from the four planes, for they are
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lines through the intersection P of g with the plane

7r, and they pass through the given harmonic points

A, B, C, D. Any other plane a cuts g in a point S and

cuts a, /3, 7, 8 in four lines that meet ir in four points

A', B', C", D' lying on PA, PB, PC, and PD respec-

tively, and are thus four harmonic lines. Further, any

ray cuts a, yS, 7, 8 in four harmonic points, since any

plane through the ray gives four harmonic lines of

intersection.

35. These results may be put together as follows

:

Given any two assemblages of points, rags, or planes,

perspectively related to each other, four harmonic elements

of one must correspond to four elements of the other which

are likewise harmonic.

If, now, two forms are perspectively related to a thircl,

any four harmonic elements of one must correspond to

four harmonic elements in the other. We take this as

our definition of projective correspondence, and say:

36. Definition of projectivity. Two fundamental forms

are protectively related to each other when a one-to-one cor-

respondence exists between the elements of the two and when

four harmonic elements of one correspond to four harmonic

elements of the other.

37. Correspondence between harmonic conjugates. Given

four harmonic points, A, B, C, D; if we fix A and C,

then B and D vary together in a way that should be

thoroughly understood. To get a clear conception of

their relative motion we may fix the points L and M of

the quadrangle K, L, M, A" (Fig. 6). Then, as B describes

the point-row AG, the point N describes the point-row
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Fit;. 6

AM perspective to it. Projecting N again from C, we
get a point-row K on AL perspective to the point-row

N and thus projective to the point-row B. Project the

point-row K from M and we get a point-row D on

AC again, which is projective to the point-row B. For

every point B we have thus one and only one point

D, and conversely.

In other words, we
have set up a one-

to-one correspond-

ence between the

points of a single

point-row, which is

also a projective

correspondence be-

cause four har-

monic points B correspond to four harmonic points D.

We may note also that the correspondence is here char-

acterized by a feature which does not always appear in

projective correspondences : namely, the same process

that carries one from B to D will carry one back from

r
D to B again. This special property will receive further

study in the chapter on Involution.

38. It is seen that as B approaches A, D also ap-

proaches A. As B moves from A toward C, D moves

from A in the opposite direction, passing through the

point at infinity on the line AC, and returns on the

other side to meet B at C again. In other words, as B
traverses AC, D traverses the rest of the line from A to

C through infinity. In all positions of B, except at A or

C, B and D are separated from each other by A and C.
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39. Harmonic conjugate of the point at infinity. It is

natural to inquire what position of B corresponds to the

infinitely distant position of D. We have proved (§ 27)

that the particular quadrangle K, L, M, N employed is

of no consequence. We shall therefore avail ourselves of

one that lends itself most readily to

the solution of the problem. We
choose the point L so that the trian-

gle ALC is isosceles (Fig. 7). Since

D is supposed to be at infinity, the

line KM is parallel to AC. There-

fore the triangles KAC and MAC
are equal, and the triangle ANC is also isosceles. The

triangles CNL and ANL are therefore equal, and the line

LB bisects the angle ALC. B is therefore the middle

point of AC, and Ave have the theorem

The harmonic conjugate of the middle point ofAC is at

infinity.

40. Projective theorems and metrical theorems. Linear

construction. This theorem is the connecting link be-

tween the general projective theorems which we have

been considering so far and the metrical theorems of

ordinary geometry. Up to this point we have said noth-

ing about measurements, either of line segments or of

angles. Desargues's theorem and the theory of harmonic

elements which depends on it have nothing to do with

magnitudes at all. Not until the notion of an infinitely

distant point is brought in is any mention made of

distances or directions. We have been able to make
all of our constructions up to this point by means of

the straightedge, or ungraduated ruler. A construction
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made with such an instrument we shall call a linear

construction. It requires merely that we be able to

draw the line joining two points or find the point of

intersection of two lines.

41. Parallels and mid-points. It might be thought

that drawing a line through a given point parallel to

a given line was only a special case of drawing a line

joining two points. Indeed, it consists only in draw-

ing a line through the given point and through the

" infinitely distant point " on the given line. It must

be remembered, however, that the expression "infinitely

distant point" must not be taken literally. When we

say that two parallel lines meet " at infinity," we really

mean that they do not meet at all, and the only reason

for using the expression is to avoid tedious statement

of exceptions and restrictions to our theorems. We
ought therefore to consider the drawing of a line par-

allel to a given line as a different accomplishment from

the drawing of the line joining two given points. It is

a remarkable consequence of the last theorem that a

parallel to a given line and the mid-point of a given

segment are equivalent data. For the construction is

reversible, and if we are given the middle point of a

given segment, we can construct linearly a line parallel to

that segment. Thus, given that B is the middle point of

AC, we may draw any two lines through A, and any line

through B cutting them in points X and L. Join N and

L to C and get the points K and M on the two lines

through A. Then KM is parallel to AC. The bisection of

a given segment and the drawing of a line parallel to the

segment are equivalent data when linear construction is used.
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42. It is not difficult to give a linear construction

for the problem to divide a given segment into n equal

parts, given only a parallel to the segment. This is

simple enough when n is a power of 2. For any other

number, such as 29, divide any segment on the line

parallel to AC into 32 equal parts, by a repetition of

the process just described. Take 29 of these, and join

the first to A and the last to C. Let these joining lines

meet in S. Join S to all the other points. Other

problems, of a similar sort, are given at the end of

the chapter.

43. Numerical relations. Since three points, given in

order, are sufficient to determine a fourth, as explained

above, it ought to be possible to reproduce the process

numerically in view of the one-to-one correspondence

which exists between points on a line and numbers; a

correspondence which, to be sure, we have not estab-

lished here, but which is discussed in any treatise

on the theory of point sets. We proceed to discover

what relation between four numbers corresponds to the

harmonic relation between

four points.

44. Let A, B, C, D be four

harmonic points (Fig. 8), and

let SA, SB, SC, SD be four

harmonic lines. Assume a

line drawn through B parallel Fig. g

to SD, meeting SA in A' and

SC in C". Then A,' B, C, and the infinitely distant

point on A'C are four harmonic points, and therefore

B is the middle point of the segment A'C. Then, since
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the triangle DAS is similar to the triangle BAA', we
may write the proportion

AB:AD=BA':SD.
Also, from the similar triangles DSC and BCC, we have

CD:CB = SD:BC f
.

From these two proportions we have, remembering that

BA' = BC, AB-CD_ 1
AD-CB~ '

the minus sign being given to the ratio on account of the

fact that A and C are always separated from B and D,

so that one or three of the segments AB, CD, AD, CB
must be negative.

45. Writing the last equation in the form

CB:AB = -CD:AD,
and using the fundamental relation connecting three

points on a line, pR+RQ = pQy

which holds for all positions of the three points if

account be taken of the sign of the segments, the last

proportion may be written

(CA - BA) : AB = - (CA - DA) : AD,

or (AB-AC):AB = (AC-AD):AD;
so that AB, AC, and AD are three quantities in har-

monic progression, since the difference between the first

and second is to the first as the difference between the

second and third is to the third. Also, from this last

proportion comes the familiar relation

2/AC= l/AB+l/AD,
which is convenient for the computation of the distance

AD when AB and AC are given numerically.
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46. Anharmonic ratio. The corresponding relations

between the trigonometric functions of the angles deter-

mined by four harmonic lines are not difficult to obtain,

but as we shall not need them in building up the

theory of projective geometry, we will not discuss them

here. Students who have a slight acquaintance with

trigonometry may read in a later chapter (§ 161) a

development of the theory of a more general relation,

called the anharmonic ratio, or cross ratio, which connects

any four points on a line.

PROBLEMS

1. Draw through a given point a line which shall pass

through the inaccessible point of intersection of two given

lines. The following construction may be made to depend

upon Desargues's theorem : Through the given point P draw

any two rays cutting the two lines in the points AB' and

A'B, A, B, lying on one of the given lines and A', B', on the

other. Join A A' and BB', and find their point of intersec-

tion S. Through S draw any other ray, cutting the given

lines in CC'. Join BC' and B'C, and obtain their point

of intersection Q. PQ is the desired line. Justify this

construction.

2. To draw through a given point P a line which shall

meet two given lines in points A and B, equally distant from

P. Justify the following construction : Join P to the point

S of intersection of the two given lines. Construct the

fourth harmonic of PS with respect to the two given lines.

Draw through P a line parallel to this line. This is the

required line.

3. Given a parallelogram in the same plane with a given

segment A C, to construct linearly the middle point of A C.
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4. Given four harmonic lines, of which one pair are at

right angles to each other, show that the other pair make

equal angles with them. This is a theorem of which frequent

use will be made.

5. Given the middle point of a line segment, to draw a

line parallel to the segment and passing through a given

point.

6. A line is drawn cutting the sides of a triangle ABC in

the points A', B', C, the point A' lying on the side BC, etc.

The harmonic conjugate of .4' with respect to B and C is

then constructed and called A". Similarly, B" and C" are

constructed. Show that A " B' C" lie on a straight line. Find

other sets of three points on a line in the figure. Find also

sets of three lines through a point.



CHAPTER III

COMBINATION OF TWO PROJECTIVELY RELATED
FUNDAMENTAL FORMS

47. Superposed fundamental forms. Self-corresponding

elements. We have seen (§37) that two projective

point-rows may be superposed upon the same straight

line. This happens, for example, when two pencils

which are projective to each other are cut across by

a straight line. It is also possible for two projective

pencils to have the same center. This happens, for

example, when two projective point-rows are projected

to the same point. Similarly, two projective axial pen-

cils may have the same axis. We examine now the

possibility of two forms related in this way, having

an element or elements that correspond to themselves.

We have seen, indeed, that if B and D are harmonic

conjugates with respect to A and C, then the point-

row described by B is projective to the point-row de-

scribed by D, and that A and C are self-corresponding

points. Consider more generally the case of two pencils

perspective to each other with axis of perspectivity u'

(Fig. 9). Cut across them by a line u. We get thus

two projective point-rows superposed on the same line

u, and a moment's reflection serves to show that the

point N of intersection u and u' corresponds to itself

in the two point-rows. Also, the point Jf, where u

29
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Fig. 9

intersects the line joining the centers of the two pen-

cils, is seen to correspond to itself. It is thus possible

for two projective point-

rows, superposed upon

the same line, to have two

self-corresponding points.

Clearly M and N may
fall together if the line

joining the centers of the

pencils happens to pass

through the point of in-

tersection of the lines u

and u'.

48. We may also give an illustration of a case

where two superposed projective point-rows have no

self-corresponding points at all. Thus we may take

two lines revolving about a fixed

point S and always making the

same angle a with each other

(Fig. 10). They will cut out on

any line u in the plane two point-

rows which are easily seen to be

projective. For, given any four

rays SP which are harmonic, the

four corresponding rays SP' must

also be harmonic, since they make

the same angles with each other.

Four harmonic points P corre-

spond, therefore, to four harmonic points P'. It is clear,

however, that no point P can coincide with its corre-

sponding point P', for in that case the lines PS and

Fir.. 10
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P'S would coincide, which is impossible if the angle

between them is to be constant.

49. Fundamental theorem. Postulate of continuity.

We have thus shown that two projective point-rows,

superposed one on the other, may have two points, one

point, or no point at all corresponding to themselves.

We proceed to show that

If two projective point-rows, superposed upon the same

straight line, have more than two self-corresponding points,

they must have an infinite number, and every point corre-

sponds to itself; that is, the two point-rows are not

essentially distinct.

If three points, A, B, and C, are self-corresponding,

then the harmonic conjugate D of B with respect to A
and C must also correspond to itself. For four harmonic

points must always correspond to four harmonic points.

In the same way the harmonic conjugate of D with

respect to B and C must correspond to itself. Combining

new points with old in this way, we may obtain as many
self-corresponding points as we wish. We show further

that every point on the line is the limiting point of a

finite or infinite sequence of self-corresponding points.

Thus, let a point P lie between A and B. Construct

now D, the fourth harmonic of C with respect to A and

B. D may coincide with P, in which case the sequence

is closed ; otherwise P lies in the stretch AD or in the

stretch DB. If it lies in the stretch DB, construct the

fourth harmonic of C with respect to D and B. This

point D' may coincide with P, in which case, as before,

the sequence is closed. If P lies in the stretch DD',

we construct the fourth harmonic of C with respect
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to DD', etc. In each step the region in which P lies is

diminished, and the process may be continued until two

self-corresponding points are obtained on either side of

P, and at distances from it arbitrarily small.

We now assume, explicitly, the fundamental postulate

that the correspondence is continuous, that is, that the

distance between two points in one point-row may be made

arbitrarily small by sufficiently diminishing the distance

between the corresponding points in the other. Suppose

now that P is not a self-corresponding point, but cor-

responds to a point P' at a fixed distance d from P.

As noted above, we can find self-corresponding points

arbitrarily close to P, and it appears, then, that we can

take a point D as close to P as we wish, and yet the

distance between the corresponding points I)' and P'

approaches d as a limit, and not zero, which contradicts

the postulate of continuity.

50. It follows also that two projective pencils which

have the same center may have no more than two self-

corresponding rays, unless the pencils are identical. For

if we cut across them by a line, we obtain two projec-

tive point-rows superposed on the same straight line,

which may have no more than two self-corresponding

points. The same considerations apply to two projective

axial pencils which have the same axis.

51. Projective point-rows having a self-corresponding

point in common. Consider now two projective point-

rows lying on different lines in the same plane. Their

common point may or may not be a self-corresponding

point. If the two point-rows are perspectively related,

then their common point is evidently a self-corresponding
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point. The converse is also true, and we have the very

important theorem

:

52. If in two projective point-rows the point of inter-

section corresponds to itself then the point-rotvs are in

perspective position.

Let the two point-rows be u and u' (Fig. 11). Let

A and A', B and B', be corresponding points, and let

also the point M of intersection of u and u' correspond

to itself. Let AA' and BB' meet in the point S. Take

S as the center of two pencils,

one perspective to u and the other

perspective to u'. In these two

pencils SA coincides with its cor-

responding ray SA', SB with its

corresponding ray S"B', and SM / p ^
with its corresponding ray SM'.

The two pencils are thus identical, by the preceding

theorem, and any ray SD must coincide with its cor-

responding ray SD'. Corresponding points of u and u',

therefore, all lie on lines through the point S.

53. An entirely similar discussion shows that

If in two projective pencils the line joining their cen-

ters is a self-corresponding ray, then the two pencils are

perspectively related.

54. A similar theorem may be stated for two axial

pencils of which the axes intersect. Very frequent use

will be made of these fundamental theorems.

55. Point-row of the second order. The question nat-

urally arises, What is the locus of points of intersec-

tion of corresponding rays of two projective pencils
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which are not in perspective position ? This locus,

which will be discussed in detail in subsequent chapters,

is easily seen to have at most two points in common
with any line in the plane, and on account of this

fundamental property will be called a point-row of the

second order. For any line u in the plane of the two

pencils will be cut by them in two projective point-

rows which have at most two self-corresponding points.

Such a self-corresponding point is clearly a point of

intersection of corresponding rays of the two pencils.

56. This locus degenerates in the case of two per-

spective pencils to a pair of straight lines, one of which

is the axis of perspectivity and the other the common

ray, any point of which may be considered as the point

of intersection of corresponding rays of the two pencils.

57. Pencils of rays of the second order. Similar inves-

tigations may be made concerning the system of lines

joining corresponding points of two projective point-

rows. If we project the point-rows to any point in the

plane, we obtain two projective pencils having the same

center. At most two pairs of self-corresponding rays

may present themselves. Such a ray is clearly a line

joining two corresponding points in the two point-rows.

The result may be stated as follows : Tlie system of rays

joining corresponding points in two projective point-rows

has at most two rays in common with any pencil in the

plane. For that reason the system of rays is called a

pencil of rays of the second order.

58. In the case of two perspective point-rows this

system of rays degenerates into two pencils of rays of

the first order, one of which has its center at the center
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of perspectivity of the two point-rows, and the other at

the intersection of the two point-rows, any ray through

which may be considered as joining two corresponding

points of the two point-rows.

59. Cone of the second order. The corresponding

theorems in space may easily be obtained by joining

the points and lines considered in the plane theorems

to a point S in space. Two projective pencils give rise

to two projective axial pencils with axes intersecting.

Corresponding planes meet in lines which all pass

through S and through the points on a point-row of

the second order generated by the two pencils of rays.

They are thus generating lines of a cone of the second

order, or quadric cone, so called because every plane in

space not passing through S cuts it in a point-row of

the second order, and every line also cuts it in at most

two points. If, again, we project two point-rows to a

point S in space, we obtain two pencils of rays with a

common center but lying in different planes. Corre-

sponding lines of these pencils determine planes which

are the projections to S of the lines which join the cor-

responding points of the two point-rows. At most two

such planes may pass through any ray through S. It

is called a pencil of planes of the second order.

PROBLEMS

1. A man A moves along a straight road u, and another

man B moves along the same road and walks so as always

to keep sight of A in a small mirror M at the side of the

road. How many times will they come together, A moving

always in the same direction along the road ?
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2. How many times would the two men in the first prob-

lem see each other in two mirrors M and N as they walk

along the road as before ? (The planes of the two mirrors

are not necessarily parallel to u.)

3. As A moves along u, trace the path of B so that the

two men may always see each other in the two mirrors.

4. Two boys walk along two paths u and u\ each holding

a string which they keep stretched tightly between them.

They both move at constant but different rates of speed,

letting out the string or drawing it in as they walk. How
many times will the line of the string pass over any given

point in the plane of the paths ?

5. Trace the lines of the string when the two boys move

at the same rate of speed in the two paths but do not start

at the same time from the point where the two paths

intersect.

6. A ship is sailing on a straight course and keeps a gun

trained on a point on the shore. Show that a line at right

angles to the direction of the gun at its muzzle will pass

through any point in the plane twice or not at all. (Con-

sider the point-row at infinity cut out by a line through the

point on the shore at right angles to the direction of

the gun.)

7. Two lines u and u' revolve about two points U and U'

respectively in the same plane. They go in the same direc-

tion and at the same rate of speed, but one has an angle a

the start of the other. Show that they generate a point-row

of the second order.

8. Discuss the question given in the last problem when

the two lines revolve in opposite directions. Can you

recognize the locus ?



CHAPTER IV

POINT-ROWS OF THE SECOND ORDER

60. Point-row of the second order defined. We have

seen that two fundamental forms in one-to-one corre-

spondence may sometimes generate a form of higher

order. Thus, two point-rows (§ 55) generate a system of

rays of the second order, and two pencils of rays (§ 57),

a system of points of the second order. As a system of

points is more familiar to most students of geometry

than a system of lines, we study first the point-row of

the second order.

61. Tangent line. We have shown in the last chapter

(§ 55) that the locus of intersection of corresponding

rays of two projective pencils is a point-row of the

second order ; that is, it has at most two points in com-

mon with any line in the plane. It is clear, first of all,

that the centers of the pencils are points of the locus

;

for to the line SS', considered as a ray of S, must

correspond some ray of S' which meets it in S'. S',

and by the same argument S, is then a point where

corresponding rays meet. Any ray through S will meet

it in one point besides S, namely, the point P where

it meets its corresponding ray. Now, by choosing the

ray through S sufficiently close to the ray SS', the point

P may be made to approach arbitrarily close to S', and

the ray S'P may be made to differ in position from the

37
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tangent line at S' by as little as we please. We have,

then, the important theorem

The ray at S' which corresponds to the common ray SS'

is tangent to the locus at S'.

In the same manner the tangent at S may be

constructed.

62. Determination of the locus. We now show that

it is possible to assign arbitrarily the position of three

points, A, B, and C, on the locus (besides the points S

and $') ; but, these three points being chosen, the locus is

completely determined.

63. This statement is equivalent to the following:

Given three pairs of corresponding rays in two projective

pencils, it is possible to find a ray of one which corre-

sponds to any ray of the other.

64. We proceed, then, to the solution of the funda-

mental

Problem : Given three pairs of rays, aa', bb', and cc',

of two projective pencils, S and S', to find the ray d' of S'

which corresponds to any ray d of S.

Call A the intersection of aa', B the intersection of bb',

and C the intersection of cc' (Fig. 12). Join AB by the

line u, and AC by the line u'. Consider u as a point-

row perspective to S, and u' as a point-row perspective

to S'. u and u' are projectively related to each other,

since S and S' are, by hypothesis, so related. But their

point of intersection A is a self-corresponding point, since

a and a' were supposed to be corresponding rays. It fol-

lows (§52) that u and u' are in perspective position,

and that lines through corresponding points all pass
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through a point M, the center of perspectivity, the

position of which will be determined by any two such

lines. But the intersection of e with u and the intersec-

tion of c' with u' are corresponding points on u and u',

and the line joining them is clearly c itself. Similarly,

b' joins two corresponding points on u and u', and so the

center M of perspectivity of u and u' is the intersection

Fig. 12

of c and b'. To find d' in S' corresponding to a given

line d of S, we note the point L where d meets u. Join

L to M and get the point N where this line meets u'.

L and N are corresponding points on u and u', and d'

must therefore pass through N. The intersection D of

d and d' is thus another point on the locus. In the same

manner any number of other points may be obtained.

65. The lines u and u' might have been drawn in

any direction through A (avoiding, of course, the line

a for u and the line a' for w'), and the center of per-

spectivity M would be easily obtainable ; but the above

construction furnishes a simple and instructive figure.

An equally simple one is obtained by taking a' for u

and a for u'.
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66. Lines joining four points of the locus to a fifth.

Suppose that the points S, S\ B, C, and D are fixed,

and that four points, A, A^ A
2
, and A

z
, are taken on the

locus at the intersection with it of any four harmonic

rays through B. These four harmonic rays give four

harmonic points, L, L^ etc., on the fixed ray SD. These,

in turn, project through the fixed point M into four

harmonic points, iV, iV, etc., on the fixed line DS'.

These last four harmonic points give four harmonic

rays CA, CA^ CA
2
, CA

S
. Therefore the four points A

which project to B in four harmonic rays also pro-

ject to C m four harmonic rays. But C may be any

point on the locus, and so we have the very important

theorem,

Four points which are on the locus, and which project

to a fifth point of the locus in four harmonic rays, project

to any point of the locus in four harmonic rays.

67. The theorem may also be stated thus:

The locus of points from which four given points are

seen along four harmonic rays is a point-row of the second

order through them.

68. A further theorem of prime importance also

follows

:

Any tivo points on the locus may be taken as the centers

of two projective pencils which will generate the locus.

69. Pascal's theorem. The points A, B, C, D, S, and

S' may thus be considered as chosen arbitrarily on the

locus, and the following remarkable theorem follows

at once.
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Given six points, 1, 2, 3, 4, 5, 6, on the point-row of

the second order, if we call

L the intersection of 12 with 45,

M the intersection of 23 with 56,

N the intersection of 34 with 61,

then L, M, and N are on a straight line.

70. To get the notation to correspond to the figure, we
may take (Fig. 13) A = 1, B= 2, S'= 3, D= 4, S = 5, and

C= 6. If we make A = 1, C= 2, S= 3, 1) = 4, S' = 5, and

B = 6, the points L and iV are interchanged, but the line

is left unchanged.

It is clear that one

point may be named

arbitrarily and the

other five named in

5 ! = 120 different

ways, but since, as

we have seen, two

different assignments

of names give the

same line, it follows

that there cannot be

more than 60 differ-

ent lines LMN obtained in this way from a given set of

six points. As a matter of fact, the number obtained in

this way is in general 60. The above theorem, which

is of cardinal importance in the theory of the point-row

of the second order, is due to Pascal and was discovered

by him at the age of sixteen. It is, no doubt, the most

important contribution to the theory of these loci since

Fig. 13
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the days of Apollonius. If the six points be called the

vertices of a hexagon inscribed in the curve, then the

sides 12 and 45 may be appropriately called a pair of

opposite sides. Pascal's theorem, then, may be stated

as follows:

TJie three pairs of opposite sides of a hexagon inscribed in

a point-row of the second order meet in three points on a line.

71. Harmonic points on a point-row of the second order.

Before proceeding to develop the consequences of this

theorem, we note another result of the utmost impor-

tance for the higher developments of pure geometry,

which follows from the fact that if four points on the

locus project to a fifth in four harmonic rays, they will

project to any point of the locus in four harmonic rays.

It is natural to speak of four such points as four har-

monic points on the locus, and to use this notion to

define projective correspondence between point-rows of

the second order, or between a point-row of the second

order and any fundamental form of the first order.

Thus, in particular, the point-row of the second order,

er, is said to be perspectively related to the pencil S when

every ray on S goes through the point on a which

corresponds to it.

72. Determination of the locus. It is now clear that

five points, arbitrarily chosen in the plane, are sufficient

to determine a point-row of the second order through

them. Two of the points may be taken as centers of

two projective pencils, and the three others will deter-

mine three pairs of corresponding rays of the pencils,

and therefore all pairs. If four points of the locus are
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given, together with the tangent at one of them, the

locus is likewise completely determined. For if the point

at which the tangent is given be taken as the center S
of one pencil, and any other of the points for $', then,

besides the two pairs of corresponding rays determined

by the remaining two points, we have one more pair,

consisting of the tangent at S and the ray SS'. Simi-

larly, the curve is determined by three points and the

tangents at two of them.

73. Circles and conies as point-rows of the second order.

It is not difficult to see that a circle is a point-row of

the second order. Indeed, take any point S on the circle

and draw four harmonic rays through it. They will cut

the circle in four points, which will project to any other

point of the curve in four harmonic rays; for, by the

theorem concerning the angles inscribed in a circle, the

angles involved in the second set of four lines are

the same as those in the first set. If, moreover, we pro-

ject the figure to any point in space, we shall get a cone,

standing on a circular base, generated by two projective

axial pencils which are the projections of the pencils

at S and S'. Cut across, now, by any plane, and we get

a conic section which is thus exhibited as the locus of

intersection of two projective pencils. It thus appears

that a conic section is a point-row of the second order.

It will later appear that a point-row of the second order

is a conic section. In the future, therefore, we shall

refer to a point-row of the second order as a conic.

74. Conic through five points. Pascal's theorem fur-

nishes an elegant solution of the problem of drawing a

conic through five given points. To construct a sixth



44 PROJECTIVE GEOMETRY

Fn;. 14

point on the conic, draw through the point numbered 1

an arbitrary line (Fig. 14), and let the desired point

6 be the second point of intersection

of this line with the conic. The point

L = 12 — 45 is obtainable at once ; also

the point N= 34 - 61. But L and N
determine Pascal's line, and the in-

tersection of 23 with 56 must be on

this line. Intersect, then, the line LN
with 23 and obtain the point M. Join

M to 5 and intersect with 61 for the desired point 6.

75. Tangent to a conic. If two points of Pascal's hex-

agon approach coincidence, then the line joining them

approaches as a limiting position the tangent line at that

point. Pascal's theorem thus affords a ready method of

drawing the tangent line to a conic

at a given point. If the conic is de-

termined by the points 1, 2, 3, 4, 5

(Fig. 15), and it is desired to draw

the tangent at the point 1, we may
call that point 1, 6. The points

L and M are obtained as usual,

and the intersection of 34 with LJf

gives JV. Join N to the point 1 for

the desired tangent at that point.

76. Inscribed quadrangle. Two pairs of vertices may
coalesce, giving an inscribed quadrangle. Pascal's theo-

rem gives for this case the very important theorem

Two pairs of opposite sides of any quadrangle inscribed

in a conic meet on a straight line, upon which line also

intersect the two pairs of tangents at the opposite vertices.

Fig. 15
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Fig. 16

For let the vertices be A, B, C, and D, and call the

vertex A the point 1, 6 ; B, the point 2 ; C, the point

3, 4 ; and D, the point 5 (Fig. 16). Pascal's theorem then

indicates that

L=AB-CD,
M=AD-BC,
and N, which

is the inter-

section of the

tangents at A
and C, are all

on a straight

line u. But

if we were to

call A the point 2, B the point 6,1, C the point 5, and

D the point 4, 3, then the intersection P of the tangents

at B and D are also on this same

line u. Thus L, M, iV, and P are

four points on a straight line.

The consequences of this theorem

are so numerous and important

that we shall devote a separate

chapter to them.

77. Inscribed triangle. Finally,

three of the vertices of the hex-

agon may coalesce, giving a trian-

gle inscribed in a conic. Pascal's

theorem then reads as follows (Fig. 17) for this case:

The three tangents at the vertices of a triangle inscribed

in a conic meet the opposite sides in three points on a

straight line.

Fig. 17
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78. Degenerate conic. If we apply Pascal's theorem

to a degenerate conic made up of a pair of straight

lines, we get the

following theo-

rem (Fig. 18)

:

Ifthree points,

A, B, C, are

chosen on one

line, and three

points, A', B',

C, are chosen on

another, then the

three points L=AB'-A'B, N= BC-B'C, M=CA'-C'A
are all on a straight line.

Pig. 18

PROBLEMS

1. In Fig. 12, select different lines u and u' and find

for each pair the center of perspectivity M.

2. Given four points, A, B, C, D, in the plane, construct

a fifth point P such that the lines PA, PB, PC, PD shall be

four harmonic lines.

Suggestion. Draw a line a through the point A such that the four

lines a, AB, AC, AD are harmonic. Construct now a conic through

A, B, C, and D having a for a tangent at A.

3. Where are all the points P, as determined in the

preceding question, to be found ?

4. Select any five points in the plane and draw the tan-

gent to the conic through them at each of the five points.

5. Given four points on the conic, and the tangent at one of

them, to construct the conic. (" To construct the conic " means

here to construct as many other points as may be desired.)
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6. Given three points on the conic, and the tangent at

two of them, to construct the conic.

7. Given five points, two of which are at infinity in

different directions, to construct the conic. (In this, and

in the following examples, the student is supposed to be

able to draw a line parallel to a given line.)

8. Given four points on a conic (two of which are at in-

finity and two in the finite part of the plane), together with

the tangent at one of the finite points, to construct the conic.

9. The tangents to a curve at its infinitely distant points

are called its asymptotes if they pass through a finite part

of the plane. Given the asymptotes and a finite point of a

conic, to construct the conic.

10. Given an asymptote and three finite points on the

conic, to determine the conic.

11. Given four points, one of which is at infinity, and

given also that the line at infinity is a tangent line) to

construct the conic.



CHAPTER V

PENCILS OF RAYS OF THE SECOND ORDER

79. Pencil of rays of the second order defined. If the

corresponding points of two projective point-rows be

joined by straight lines, a system of lines is obtained

which is called a pencil of rays of the second order.

This name arises from the fact, easily shown (§ 57), that

at most two lines of the system may pass through any

arbitrary point in the plane. For if through any point

there should pass three lines of the system, then this

point might be taken as the center of two projective

pencils, one projecting one point-row and the other pro-

jecting the other. Since, now, these pencils have three

rays of one coincident with the corresponding rays of

the other, the two are identical and the two point-rows

are in perspective position, which was not supposed.

80. Tangents to a circle. To get a clear notion of this

system of lines, we may first show that the tangents

to a circle form a system of this kind. For take any

two tangents, u and w', to a circle, and let A and B
be the points of contact (Fig. 19). Let now t be any

third tangent with point of contact at C and meeting u

and u' in P and P' respectively. Join A, B, P, P f

, and

C to 0, the center of the circle. Tangents from any

point to a circle are equal, and therefore the triangles

POA and POC are equal, as also are the triangles P'OB
48
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and P'OC. Therefore the angle POP' is constant, being

equal to half the constant angle AOC +COB. This

being true, if we take any four harmonic points, Pu i£,

JP, 7^, on the line u, they will project to O in four

harmonic lines, and the tangents

to the circle from these four

points will meet u' in four har-

monic points, i^', P,', i^', i^', be-

cause the lines from these points

to inclose the same angles as

the lines from the points Pv P2 ,

J^, P± on u. The point-row on u is therefore projective

to the point-row on u'.' Thus the tangents to a circle

are seen to join corresponding points on two projective

point-rows, and so, according to the definition, form a

pencil of rays of the second order.

81. Tangents to a conic. If now this figure be pro-

jected to a point outside the plane of the circle, and

any section of the resulting cone be made by a plane,

we can easily see that the system of rays tangent to any

conic section is a pencil of rays of the second order.

The converse is also true, as we shall see later, and a

pencil of rays of the second order is also a set of lines

tangent to a conic section.

82. The point-rows u and u' are, themselves, lines of

the system, for to the common point of the two point-

rows, considered as a point of u, must correspond some

point of u', and the line joining these two corresponding

points is clearly v! itself. Similarly for the line u.

83. Determination of the pencil. We now show that

it is possible to assign arbitrarily three lines, a, b, and c, of
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the system (besides the lines u and w') ; but if these three

lines are chosen, the system is completely determined.

This statement is equivalent to the following:

Griven three pairs of corresponding points in two pro-

jective point-rows, it is possible to find a point in one

which corresponds to any point of the other.

We proceed, then, to the solution of the fundamental

Problem. G-iven three pairs of points, AA', BB\ and

CC, of two projective point-rows u and u', to find the point

D' of u' which corresponds to any given point D of u.

On the line a, joining A and A', take two points, S

and S', as centers of pencils perspective to u and u'

respectively (Fig. 20). The figure

will be much simplified if we take

S on BB' and S' on CC. SA and

S'A' are corresponding rays of S
and S', and the two pencils are

therefore in perspective position.

It is not difficult to see that the

axis of perspectivity m is the line

joining B' and C. Given any point

D on u, to find the correspond-

ing point D' on u' we proceed as

follows: Join D to S and note

where the joining line meets m. Join this point to S!

.

This last line meets u' in the desired point D'.

We have now in this figure six lines of the system,

a, b, c, d, u, and u'. Fix now the position of tf, u', b, c, and

d, and take four lines of the system, a
x
, an , a

3
, a

4
, which

meet b in four harmonic points. These points project to

Fig. 20
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D, giving four harmonic points on m. These again project

to Z>', giving four harmonic points on ft It is thus clear

that the rays a , «
2
, a , a

4
cut out two projective point-

rows on any two lines of the system. Thus u and u' are

not special rays, and any two rays of the system will

serve as the point-rows to generate the system of lines.

84. Brianchon's theorem. From the figure also appears

a fundamental theorem due to Brianchon

:

If 1, 2, 3, 4, 5, G are any six rays of a pencil of the

second order, then the lines Z = (12, 45), m = (23, 56),

w=(34, 61) all pass through a point.

85. To make the notation fit the figure (Fig. 21), make

0s=l, b= 2, w'=3, d = 4, u = 5, 6' = 6; or, interchanging

two of the lines, a=l,

<?=2,w=3,&=4,«*'c=5
1

b — {j. Thus, by dif-

ferent namings of the

lines, it appears that

not more than GO dif-

ferent Brianchon points

are possible. If we

call 12 and 45 oppo-

site vertices of a cir-

cumscribed hexagon,

then Brianchon's theorem may be stated as follows:

The three lines joining the three pairs of opposite vertices

of a hexagon circumscribed about a conic meet in a point.

86. Construction of the pencil by Brianchon's theorem.

Brianchon's theorem furnishes a ready method of deter-

mining a sixth line of the pencil of rays of the second

Fig. 21
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Fig. 22

order when five are given. Thus, select a point in line

1 and suppose that line 6 is to pass through it. Then

I = (12, 45), n = (34, 61), and the line m = (23, 56) must

pass through (I, n). Then (23, In) meets 5 in a point of

the required sixth line.

87. Point of contact

of a tangent to a conic.

If the line 2 approach as

a limiting position the

line 1, then the intersec-

tion (1, 2) approaches

as a limiting position

the point of contact of

1 with the conic. This suggests an easy way to con-

struct the point of contact of any tangent with the conic.

Thus (Fig. 22), given the lines 1, 2, 3, 4, 5 to construct

the point of contact of 1=6.
Draw I= (12* 45),m =(28, 56);

then (34, Im) meets 1 in the

required point of contact T.

88. Circumscribed quadrilat-

eral. If two pairs of lines in

Brianchon's hexagon coalesce,

we have a theorem concern-

ing a quadrilateral circum-

scribed about a conic. It is

easily found to be (Fig. 23)

The four lines joining the two opposite pairs of vertices

and the two opposite points of contact of a quadrilateral

circumscribed about a conic all meet in a point. The

consequences of this theorem will be deduced later.
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89. Circumscribed triangle. The hexagon may further

degenerate into a triangle, giving the theorem (Fig. 24)

TJie lines joining the vertices to

the points of contact of the opposite

sides of a triangle circumscribed

about a conic all meet in a point.

90. Brianchon's theorem may
also be used to solve the follow-

ing problems:

Givenfour tangents and the point

of contact on any one of them, to construct other tangents to

a conic. Given three tangents and the points of contact of

any two of them, to construct oilier tangents to a conic.

91. Harmonic tangents. We have seen that a variable

tangent cuts out on any two fixed tangents projective

point-rows. It follows that if four tangents cut a fifth

in four harmonic points, they must cut every tangent in

four harmonic points. It is possible, therefore, to make

the following definition

:

Four tangents to a conic are said to be harmonic when

they meet every other tangent in four harmonic points.

92. Projectivity and perspectivity. This definition sug-

gests the possibility of defining a projective correspond-

ence between the elements of a pencil of rays of the

second order and the elements of any form heretofore

discussed. In particular, the points on a tangent are

said to be perspectively related to the tangents of a conic

when each point lies on the tangent which corresponds

to it. These notions are of importance in the higher

developments of the subject.
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93. Brianchon's theorem may also be applied to a

degenerate conic made up of two points and the lines

through them. Thus(Fig. 25),

If a, b, c are three lines

through a point S, and a', b',

c
1 are three lines through an-

other point S\ then the fines

l = (ab', a'b), m = (&</, b'c~),

and n = (ca\ c'd) all meet in

a point.

94. Law of duality. The

observant student will not

have failed to note the re-

markable similarity between the theorems of this chap-

ter and those of the preceding. He will have noted

that points have replaced lines and lines have replaced

points ; that points on a curve have been replaced 1 >y

tangents to a curve ; that pencils have been replaced

by point-rows, and that a conic considered as made up

of a succession of points has been replaced by a conic

considered as generated by a moving tangent line. The

theory upon which this wonderful laiv of duality is based

will be developed in the next chapter.

Fig. 25

PROBLEMS

1. Given four lines in the plane, to construct another

which shall meet them in four harmonic points.

2. Where are all such lines found?

3. Given any five lines in the plane, construct on each

the point of contact with the conic tangent to them all.
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4. Given four lines and the point of contact on one, to

construct the conic. (" To construct the conic " means here

to draw as many other tangents as may be desired.)

5. Given three lines and the point of contact on two of

them, to construct the conic.

6. Given four lines and the line at infinity, to construct

the conic.

7. Given three lines and the line at infinity, together

with the point of contact at infinity, to construct the conic.

8. Given three lines, two of which are asymptotes, to

construct the conic.

9. Given five tangents to a conic, to draw a tangent

which shall be parallel to any one of them.

10. The lines a, b, c are drawn parallel to each other.

The lines a', b', c' are also drawn parallel to each other.

Show why the lines (ab'
}
a'b), (be', b'c), (ca'

}
c'a) meet in a

point. (In problems 6 to 10 inclusive, parallel lines are to

be drawn.)



CHAPTER VI

POLES AND POLARS

95. Inscribed and circumscribed quadrilaterals. The

following theorems have been noted as special cases of

Pascal's and Brianchon's theorems:

If a quadrilateral be inscribed in a conic, two pairs of

opposite sides and the tangents at opposite vertices inter-

sect in four points, all of which lie on a straight line.

If a quadrilateral be circumscribed about a conic, the

lines joining two pairs of opposite vertices and the linet

joining two opposite points of contact are four lines which

meet in a point.

96. Definition of the polar line of a point. Consider

the quadrilateral K, L, 31, N inscribed in the conic

(Fig. 26). It

determines the

four harmonic

points A, B, G,

D which pro-

ject fromN into

the four har-

monic points M,

B, K, 0. Now
the tangents at K and M meet in P, a point on the

line AB. The line AB is thus determined entirely by

56

Fig. 26
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the point 0. For if we draw any line through it, meeting

the conic in K and M, and construct the harmonic

conjugate B of with respect to K and M, and also

the two tangents at K and M which meet in the point

P, then BP is the line in question. It thus appears

that the line LON may be any line whatever through
;

and since D, L, 0, A7" are four harmonic points, we
may describe the line AB as the locus of points which

are harmonic conjugates of with respect to the two

points where any line through meets the curve.

97. Furthermore, since the tangents at L and N meet

on this same line, it appears as the locus of intersections

of pairs of tangents drawn at the extremities of chords

through 0.

98. This important line, which is completely deter-

mined by the point 0, is called the polar of with

respect to the conic ; and the point is called the pole

of the line with respect to the conic.

99. If a point B is on the polar of 0, then it is har-

monically conjugate to with respect to the two inter-

sections K and M of the line BO with the conic. But

for the same reason is on the polar of B. We have,

then, the fundamental theorem

If one point lies on the polar of a second, then the

second lies on the polar of the first.

100. Conjugate points and lines. Such a pair of points

are said to be conjugate with respect to the conic. Simi-

larly, lines are said to be conjugate to each other with

respect to the conic if one, and consequently each,

passes through the pole of the other.
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101. Construction of the polar line of a given point.

Given a point P, if it is within the conic (that is, if no

tangents may be drawn from P to the

conic), we may construct its polar line

by drawing through it any two chords

and joining the two points of inter-

section of the two pairs of tangents

at their extremities. If the point P is

outside the conic, we may draw the two tangents and

construct the chord of contact (Fig. 27).

102. Self-polar triangle. In Fig. 26 it is not difficult

to see that AOC is a self-polar triangle, that is, cadi

vertex is the pole of the opposite side. For B, M, O, K
are four harmonic points, and they project to C in four

harmonic rays. The line CO, therefore, meets the line

AMN in a point on the polar of A, being separated from

A harmonically by the points M and N. Similarly, the

line CO meets KL in a point on the polar of A, and

therefore CO is the polar of A. Similarly, OA is the

polar of C, and therefore is the pole of AC.

103. Pole and polar projectively related. Another very

important theorem comes directly from Fig. 26.

As a point A moves along a straight line its polar with

respect to a conic revolves about a fixed point arid describe*

a pencil projective to the point-row described by A.

For, fix the points L and N and let the point A move

along the line AQ; then the point-row A is projective

to the pencil LK, and since K moves along the conic,

the pencil LK is projective to the pencil NK, which in

turn is projective to the point-row C, which, finally, is

projective to the pencil OC, which is the polar of A.
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104. Duality. We have, then, in the pole and polar

relation a device for setting up a one-to-one correspond-

ence between the points and lines of the plane— a cor-

respondence which may be called projective, because to

four harmonic points or lines correspond always four

harmonic lines or points. To every figure made up of

points and lines will correspond a figure made up of

lines and points. To a point-row of the second order,

which is a conic considered as a point-locus, corresponds

a pencil of rays of the second order, which is a conic

considered as a line-locus. The name {

duality ' is used

to describe this sort of correspondence. It is important

to note that the dual relation is subject to the same

exceptions as the one-to-one correspondence is, and

must not be appealed to in cases where the one-to-one

correspondence breaks down. We have seen that there

is in Euclidean geometry one and only one ray in a

pencil which has no point in a point-row perspective to

it for a corresponding point ; namely, the line parallel

to the line of the point-row. Any theorem, therefore,

that involves explicitly the point at infinity is not to

be translated into a theorem concerning lines. Further,

in the pencil the angle between two lines has nothing

to correspond to it in a point-row perspective to the

pencil. Any theorem, therefore, that mentions angles is

not translatable into another theorem by means of the

law of duality. Now we have seen that the notion of

the infinitely distant point on a line involves the notion

of dividing a segment into any number of equal parts—
in other words, of measuring. If, therefore, we call any

theorem that has to do with the line at infinity or with
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the measurement of angles a metrical theorem, and any

other kind a projective theorem, we may put the case

as follows:

Any projective theorem involves another theorem, dual to

if, obtainable by interchanging everywhere the words ''point''

and "line?

105. Self-dual theorems. The theorems of this chap-

ter will be found, upon examination, to be self-dual;

that is, no new theorem results from applying the

process indicated in the preceding paragraph. It is

therefore useless to look for new results from the theo-

rem on the circumscribed quadrilateral derived from

Brianchon's, which is itself clearly the dual of Pascal's

theorem, and in fact was first discovered by dualization

of Pascal's.

106. It should not be inferred from the above discus-

sion that one-to-one correspondences may not be devised

that will control certain of the so-called metrical rela-

tions. A very important one may be easily found that

leaves angles unaltered. The relation called similarity

leaves ratios between corresponding segments unaltered.

The above statements apply only to the particular one-

to-one correspondence considered.

PROBLEMS

1. Given a quadrilateral, construct the quadrangle polar

to it with respect to a given conic.

2. A point moves along a straight line. Show that its

polar lines with respect to two given conies generate a

point-row of the second order.
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3. Given five points, draw the polar of a point with re-

spect to the conic passing through them, without drawing

the conic itself.

4. Given five lines, draw the polar of a point with re-

spect to the conic tangent to them, without drawing the

conic itself.

5. Dualize problems 3 and 4.

6. Given four points on the conic, and the tangent at one

of them, draw the polar of a given point without drawing

the conic. Dualize.

7. A point moves on a conic. Show that its polar line

with respect to another conic describes a pencil of rays of

the second order.

Suggestion. Replace the given conic "by a pair of projective pencils.

8. Show that the poles of the tangents of one conic with

respect to another lie on a conic.

9. The polar of a point A with respect to one conic is a,

and the pole of a with respect to another conic is A '. Show

that as A travels along a line, A ' also travels along another

line. In general, if A describes a curve of degree n, show

that A ' describes another curve of the same degree n. (The

degree of a curve is the greatest number of points that it

may have in common with any line in the plane.)



CHAPTER VII

METRICAL PROPERTIES OF THE CONIC SECTIONS

107. Diameters. Center. After what has been said in

the last chapter one would naturally expect to get at

the metrical properties of the conic sections by the

introduction of the infinite elements in the plane. En-

tering into the theory of poles and polars with these

elements, we have the following definitions

:

The polar line of an infinitely distant point is called

a diameter, and the pole of the infinitely distant line is

called the center, of the conic.

108. From the harmonic properties of poles and polars,

The center bisects all chords through it (§ 39).

Every diameter passes through the center.

All chords through the same point at infinity (that in,

each of a set ofparallel chords^) are bisected by the diameter

which is the polar of that infinitely distant point.

109. Conjugate diameters. We have already denned

conjugate lines as lines which pass each through the

pole of the other (§ 100).

Any diameter bisects all chords parallel to its conjugate.

The tangents at the extremities of any diameter are

parallel, and parallel to the conjugate diameter.

Diameters parallel to the sides of an inscribed paral-

lelogram are conjugate.

All these theorems are easy exercises for the student.
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110. Classification of conies. Conies are classified ac-

cording to their relation to the infinitely distant line.

If a conic has two points in common with the line at

infinity, it is called a hyperbola ; if it has no point in

common with the infinitely distant line, it is called an

ellipse ; if it is tangent to the line at infinity, it is called

a parabola.

111. In a hyperbola the center is outside the curve

(§ 101), since the two tangents to the curve at the points

where it meets the line at infinity determine by their

intersection the center. As previously noted, these two

tangents are called the asymptotes of the curve. The

ellipse and the parabola have no asymptotes.

112. The center of the parabola is at infinity, and there-

fore all its diameters are parallel, for the pole of a tan-

gent line is the point of contact.

The locus of the middle points of a series of parallel

chords in a parabola is a diameter, and the direction of

the line of eenters is the same for all series of parallel

chords.

The center of an ellipse is within the curve.

113. Theorems concerning asymptotes. We derived as

a consequence of the theorem of Brianchon (§ 89) the

proposition that if a triangle be circumscribed about

a conic, the lines joining the vertices to the points

of contact of the opposite sides all meet in a point.

Take, now, for two of the tangents the asymptotes of

a hyperbola, and let any third tangent cut them in A
and B (Fig. 28). If, then, is the intersection of the

asymptotes,— and therefore the center of the curve,—
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Fig. 28

then the triangle OAB is circumscribed about the curve.

By the theorem just quoted, the line through A par-

allel to OB, the line through B parallel to OA, and the

line OP through the point of

contact of the tangent AB
all meet in a point C. But

OACB is a parallelogram, and

PA = PB. Therefore

The asymptotes cut off on

each tangent a segment which is

bisected by the point of contact.

114. If we draw a line OQ
parallel to AB, then OP and OQ are conjugate diam-

eters, since OQ is parallel to the tangent at the point

where OP meets the curve. Then, since A, P, B, and

the point at infinity on AB are four harmonic points,

we have the theorem

Conjugate diameters of the hyperbola are harmonic

conjugates with respect to the asymptotes.

115. The chord A"B", parallel to the diameter OQ, is

bisected at P' by the conjugate diameter OP. If the

chord A"B" meet the asymptotes in A', B', then A', P', B',

and the point at infinity are four harmonic points, and

therefore P' is the middle point of A'B'. Therefore

A'A"=B'B" and we have the theorem

Tlte segments cut off on any chord between the hyperbola

and its asymptotes are equal.

116. This theorem furnishes a ready means of con-

structing the hyperbola by points when a point on the

curve and the two asymptotes are given.
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Fig. 29

117. For the circumscribed quadrilateral, Brianchon's

theorem gave (§ 88) The lines joining opposite vertices

and the lines joining opposite points of contact are four

lines meeting in a point. Take now for two of the

tangents the asymptotes, and let AB and CD be any

other two (Fig. 29).

If B and D are op-

posite vertices, and

also A and C, then

A C and BD are par-

allel, and parallel to

FQ, the line joining

the points of con-

tact of AB and CD,

for these are three of

the four lines of the

theorem just quoted. The fourth is the line at infinity

which joins the point of contact of the asymptotes. It

is thus seen that the triangles ABC and ADC are

equivalent, and therefore the triangles AOB and COD
are also. The tangent AB may be fixed, and the tangent

CD chosen arbitrarily; therefore

The triangle formed by any tangent to the hyperbola

and the two asymptotes is of constant area.

118. Equation of hyperbola referred to the asymptotes.

Draw through the point of contact P of the tangent

AB two lines, one parallel to one asymptote and the

other parallel to the other. One of these lines meets

OB at a distance y from O, and the other meets OA at

a distance x from 0. Then, since P is the middle point
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of AB, x is one half of OA and y is one half of OB.

The area of the parallelogram whose adjacent sides arc

x and y is one half the area of the triangle AOB, and

therefore, by the preceding paragraph, is constant. This

area is equal to xy • sin a, where a is the constant angle

between the asymptotes. It follows that the product ."/

is constant, and since x and y are the oblique coordi-

nates of the point P, the asymptotes being the axes

of reference, we have

The equation of the hyperbola, referred to the asymptote*

as axes, is xy = constant.

This identifies the curve with the hyperbola as de-

fined and discussed in works on analytic geometry.

119. Equation of

parabola. We have

defined the parabola

as a conic which is

tangent to the line

at infinity (§ 110).

Draw now two tan-

gents to the curve

(Fig. 30), meeting in

A, the points of con-

tact being B and C.

These two tangents,

together with the

line at infinity, form

a triangle circum-

scribed about the

conic. Draw through B a parallel to AC, and through

C a parallel to AB. If these meet in D, then A l> is a

Fig. 30
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diameter. Let AD meet the curve in P, and the chord

BC in Q. P is then the middle point of AQ. Also, Q
is the middle point of the chord BC

S
and therefore the

diameter AD bisects all chords parallel to BC. In par-

ticular, AD passes through P, the point of contact of

the tangent drawn parallel to BC.

Draw now another tangent, meeting AB in B' and AC
in C'. Then these three, with the line at infinity, make

a circumscribed quadrilateral. But, by Brianchon's the-

orem applied to a quadrilateral (§ 88), it appears that a

parallel to AC through B', a parallel to AB through C',

and the line BC meet in a point D'. Also, from the similar

triangles BB'D' and BA C we have, for all positions of the

tangent lineP'C", ## . mr==AC: AB,

or, since B'D'= AC,
AC : BB' =AC:AB = constant.

If another tangent meet AB in B" and A C in C", we have

AC : BB 1 = AC" : BB",

and by subtraction we get

CC":B'B" = constant;
whence

The segments cut off on any two tangents to a parabola

by a variable tangent are proportional.

If now we take the tangent B'C as axis of ordinates,

and the diameter through the point of contact as axis

of abscissas, calling the coordinates of B (x, y) and of

C (V, y'~), then, from the similar triangles BMD' and

CQ'D', we have

y:y'= BD' :D'C= BB' : AB'.

Also y : y' = B'D' :C'C=AC: C'C.
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If now a line is drawn through A parallel to a diameter,

meeting the axis of ordinates in K, we have

AK :OQ' = AC':CC' = y: y',

and OM:AK=BB': AB' = y:y',

and, by multiplication,

OM:OQ' = y*:y'\

or x : x! = y'2
: y'

2
;

whence

The abscissas of two points on a parabola are to each

other as the squares of the corresponding coordinates, a

diameter and the tangent to the curve at the extremity vf

the diameter being the axes of reference.

The last equation may be written

y
2 = 2px,

where 2p stands for y' 2
:x'.

The parabola is thus identified with the curve of the

same name studied in treatises on analytic geometry.

120. Equation of central conies referred to conjugate

diameters. Consider now a central conic, that is, one

which is not a parabola and the center of which is

therefore at a finite distance. Draw any four tangents

to it, two of which are parallel (Fig. 31). Let the

parallel tangents meet one of the other tangents in A
and B and the other in C and D, and let P and Q be

the points of contact of the parallel tangents R and S

of the others. Then AC, BD, PQ, and ^*S' all meet in

a point W (§ 88). From the figure,

J 'IV: WQ = AP:QC = PD:BQ,

or APBQ = PD- QC.
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If now DC is a fixed tangent and AB a variable one,

we have from this equation

AP • BQ = constant.

This constant will be positive or negative according as

PA and BQ are measured in the same or in opposite

directions. Accordingly we write

AP • BQ = ± b\

Since AD and BC are parallel tangents, PQ is a diam-

eter and the conjugate diameter is parallel to AD. The

middle point of PQ is the

center of the conic. We take

now for the axis of abscissas

the diameter PQ, and the

conjugate diameter for the

axis of ordinates. Join A to

Q and B to P and draw a

line through S parallel to

the axis of ordinates. These

three lines all meet in a point

N, because AP, BQ, and AB
form a triangle circumscribed

to the conic. Let NS meet

PQ in M. Then, from the properties of the circum-

scribed triangle (§ 89), M, N, S, and the point at infinity

on NS are four harmonic points, and therefore N is the

middle point of MS. If the coordinates of S are (x, y),

so that OM is x and MS is y, then MN= y/1. Now
from the similar triangles PMN and PQB we have

BQ:PQ = NM.PM,

Fig. 31
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and from the similar triangles PQA and MQN,

AP:PQ = MN:MQ,
whence, multiplying, we have

± 6
2/4 a2 = y

2
/4 (a + x) (a - sr>

where a = -~

,

or, simplifying, x2/a2 + y~/± b
2 = 1,

which is the equation of an ellipse when b
2 has a posi-

tive sign, and of a hyperbola when b
2 has a negative

sign. We have thus identified point-rows of the second

order with the curves given by equations of the second

degree.

PROBLEMS

1. Draw a chord of a given conic which shall be bisected

by a given point P.

2. Show that all chords of a given conic that are bisected

by a given chord are tangent to a parabola.

3. Construct a parabola, given two tangents with their

points of contact.

4. Construct a parabola, given three points and the direc-

tion of the diameters.

5. A line u' is drawn through the pole IT of a line u and

at right angles to u. The line u revolves about a point P.

Show that the line u' is tangent to a parabola. (The lines u

and u' are called normal conjugates.)

6. Given a conic and its center O, to draw a line through

a given point P parallel to a given line q. Prove the fol-

lowing construction : Let p be the polar of P, Q the pole of

q, and A the intersection of p with OQ. The polar of A is

the desired line.



CHAPTER VIII

INVOLUTION

121. Fundamental theorem. The important theorem

concerning two complete quadrangles (§ 26), upon which

the theory of four harmonic points was based, can easily

be extended to

the case where

the four lines

KL, K'L', MN,
M'N' do not

all meet in the

same point A,

and the more

general theo-

rem that re-

sults may also

be made the basis of a theory no less important, which has

to do with six points on a line. The theorem is as follows

:

Given two complete quadrangles, K, L, M, N and

K', L', M', N', so related that KL and K'L' meet in A,

MN and M'N' in A', KN and K'N' in B, LM and L'M
in B', LN and L'N' in C, and KM and K'M' in C, then,

if A, A', B, B', and C are in a straight line, the point C
also lies on that straight line.

The theorem follows from Desargues's theorem

(Fig. 32). It is seen that KK', LL', MM', NN' all

71

Fig. 32
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meet in a point, and thus, from the same theorem, ap-

plied to the triangles KLM and K'L'M', the point C' is on

the same line with A and />'. As in the simpler case, it

is seen that there is an indefinite number of quadrangles

which may be drawn, two sides of which go through

A and A', two through B and 7>', and one through C.

The sixth side must then go through C. Therefore,

122. Tivo pairs of points, A, A' and B, B', being given,

then the point C' corresponding to any given point C is

uniquely determined.

The construction of this sixth point is easily accom-

plished. Draw through A and A' any two lines, and

cut across them by any line through C in the points

L and N. Join N to B and L to B', thus determining

the points K and M on the two lines through A and A'.

The lineKMdetermines the desired point C'. Manifestly,

starting from C", we come in this way always to the

same point C. The particular quadrangle employed is

of no consequence. Moreover, since one pair of opposite

sides in a complete quadrangle is not distinguishable

in any way from any other, the same set of six points

will be obtained by starting from the pairs AA' and

CC', or from the pairs BB' and CC'.
.

123. Definition of involution of points on a line.

Tliree pairs of points on a line are said to be in I» volu-

tion if through each pair may be drawn a pair of opposite

sides of a complete quadrangle. If two pairs are fixed and

one of the third pair describes the line, then the other also

describes the line, and the points of the line are said to be

paired in the involution determined by the two fixed pairs.
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124. Double-points in an involution. The points C and

C describe projective point-rows, as may be seen by fixing

the points L and M. The self-corresponding points, of

which there are two or none, are called the double-points in

the involution. It is not difficult to see that the double-

points in the involution are harmonic conjugates with

respect to corresponding points in the involution. For,

fixing as before the points L and M, let the intersection

of the lines CL and C'Mbe P (Fig. 33). The locus of P is

a conic which goes through the double-points, because the

point-rows C and

C' are projective,

and therefore so

are the pencils

LC and MC'

which generate

the locus of P.

Also, when C
and C fall to-

gether, the point

P coincides with

them. Further, the tangents at L and M to this conic

described by P are the lines LB and MB. For in the

pencil at L the ray LM common to the two pencils which

generate the conic is the ray LB' and corresponds to the

ray MB of If, which is therefore the tangent line to the

conic at M. Similarly for the tangent LB at L. LM is

therefore the polar of B with respect to this conic, and

B and B' are therefore harmonic conjugates with respect

to the double-points. The same discussion applies to any

other pair of corresponding points in the involution.

Fig. 33
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125. Desargues's theorem concerning conies through

four points. Let DD' be any pair of points in the in-

volution determined as above, and consider the conic

passing through the five points A', A, M, N, I>. We
shall use Pascal's theorem to show that this conic also

passes through D'. The point D' is determined as fol-

lows : Fix L and M as before (Fig. 34) and join D to L,

giving on MN
the point N'.

Join N' to 7?,

giving on LK
the point K'.

Then MK' de-

termines the

point D' on

the line A . I
',

given by the

complete quad-

rangle K', L, 3A, N'. Consider the following six points,

numbering them in order: D=l, D'= 2, J/=3, 7V= 4,

X=5, and L= Q. We have the following intersections:

A? =(12-45), AC'= (23-56), N'= (34-61); and since by

construction B, JV', and K' are on a straight line, it fol-

lows from the converse of Pascal's theorem, which is

easily established, that the six points are on a conic.

We have, then, the beautiful theorem due to Desargues

:

The system of conies through four points meets any line

in the plane in pairs of points in involution.

126. It appears also that the six points in involution

determined by the quadrangle through the four fixed

Fig. 34
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points belong also to the same involution with the

points cut out by the system of conies, as indeed we
might infer from the fact that the three pairs of oppo-

site sides of the quadrangle may be considered as

degenerate conies of the system.

127. Conies through four points touching a given line.

It is further evident that the involution determined on

a line by the system of conies will have a double-point

where a conic of the system is tangent to the line. We
may therefore infer the theorem

Tlirough four fixed points in the ^Zawe tico conies or

none may he drawn tangent to any given line.

128. Double correspondence. We have seen that cor-

responding points in an involution form two projective

point-rows superposed on the same straight line. Two
projective point-rows superposed

on the same straight line are, how-

ever, not necessarily in involution,

as a simple example will show.

Take two lines, a and a', which

both revolve about a fixed point S
and which always make the same

angle with each other (Fig. 35).

These lines cut out on any line

in the plane which does not pass

through S two projective point-

rows, which are not, however, in

involution unless the angle between the lines is a right

angle. For a point P may correspond to a point P',

which in turn will correspond to some other point

Fig. 35
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than P. The peculiarity of point-rows in involution

is that any point will correspond to the same point,

in whichever point-row it is considered as belonging.

In this case, if a point P corresponds to a point P\ then

the point P' corresponds back again to the point P.

The points P and P' are then said to correspond doubly.

This notion is worthy of further study.

129. Steiner's construction. It will be observed that

the solution of the fundamental problem given in § 83,

Given three pairs of points of two projective point-rows, to

construct other pairs, cannot be carried out if the two

point-rows lie on the same straight line. Of course the

method may be easily altered to cover that case also,

but it is worth while to give another solution of the

problem, due to Steiner, which will also give further

information regarding the theory of involution, and

which may, indeed, be used as a foundation for that

theory. Let the two point-rows A, B, C, D, • • • and A',

B', C, D', • • • be superposed on the line u. Project

them both to a point 8 and pass any conic k through S.

We thus obtain two projective pencils, a, b, c, d, • • • and
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a', b', c', d', • • • at S, which meet the conic in the points

a, 18,7,2,." and a', £', 7', S', • • • (Fig. 36). Take now

7 as the center of a pencil projecting the points a', /3',

8', • • •, and take 7' as the center of a pencil projecting

the points a, f3, 8, . . .. These two pencils are projective

to each other, and since they have a self-corresponding

ray in common, they are in perspective position and

corresponding rays meet on the line joining (7a', 7'a)

to (7/3', 7'/3). The correspondence between points in

the two point-rows on u is now easily traced.

130. Application of Steiner's construction to double

correspondence. Steiner's construction throws into our

hands an important theorem concerning double corre-

spondence : If two projective point-rows, superposed on

the same line, have one pair of points which correspond

to each other doubly, then all pairs correspond to each

other doubly, and the line is paired in involution. To
make this appear, let us call the point A on u by two

names, A and P', according as it is thought of as

belonging to the one or to the other of the two point-

rows. If this point is one of a pair which correspond to

each other doubly, then the points A' and P must coin-

cide (Fig. 37). Take now any point C, which we will

also call B'. We must show that the corresponding

point C must also coincide with the point E. Join all

the points to S, as before, and it appears that the points

a and ir' coincide, as also do the points a'ir and yp'.

By the above construction the line y'p must meet yp'

on the line joining Qya', 7'a) with (77r', 7'7r). But these

four points form a quadrangle inscribed in the conic,

and we know by § 95 that the tangents at the opposite
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vertices 7 and 7' meet on the line v. The line y'p

is thus a tangent to the conic, and C and R are

the same point. That two projective point-rows super-

posed on the same line are also in involution when

one pair, and therefore all pairs, correspond doubly

may be shown by taking 8 at one vertex of a complete

Fig. 37

quadrangle which has two pairs of opposite
1

sides going

through two pairs of points. The details we leave to

the student.

131. Involution of points on a point-row of the second

order. It is important to note also, in Steiner's con-

struction, that we have obtained two point-rows of the

second order superposed on the same conic, and have

paired the points of one with the points of the other

in such a way that the correspondence is double. We
may then extend the notion of involution to point-rows

of the second order and say that the points of a conic

are paired in involution when they are corresponding
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points of two projective point-rows superposed on the conic,

and when they correspond to each other doubly. With this

definition we may prove the theorem : The lines joining

corresponding points of a point-row of tlie second order in

involution all pass through a fixed point U, and the line

joining any two points A, B meets the line joining the

two corresponding points A', B' in the

points of a line u, which is the polar

of U with respect to the conic. For

take A and A' as the centers of two

pencils, the first perspective to the

point-row A', B', C' and the second

perspective to the point-row A, B, C.

Then, since the common ray of the

two pencils corresponds to itself, they are in perspec-

tive position, and their axis of perspectivity u (Fig. 38)

is the line which joins the point (AB 1

, A'B~) to the

point (AC', A'C~). It is then immediately clear, from

the theory of poles and polars, that BB' and CC' pass

through the pole U of the line u.

132. Involution of rays. The whole theory thus far

developed may be dualized, and a theory of lines in

involution may be built up, starting with the complete

quadrilateral. Thus,

The three pairs of rays which may be drawn from a

point through the three pairs of opposite vertices of a

complete quadrilateral are said to be in involution. If the

pairs aa' and bb' are fixed, and the line c describes a pencil,

the corresponding line c' also describes a pencil, and the

rays of the pencil are said to be paired in the involution

determined by aa' and bb'.
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133. Double rays. The self-corresponding rays, of

which there are two or none, are called double rays of

the involution. Corresponding rays of the involution

are harmonic conjugates with respect to the double

rays. To the theorem of Desargues (§ 125) which has

to do with the system of conies through four points

we have the dual

:

The tangentsfrom a fixed point to a system of conies t<m-

gent to four fixed lines form a pencil of rays in involution.

134. If a conic of the system should go through the

fixed point, it is clear that the two tangents would co-

incide and indicate a double ray of the involution. The

theorem, therefore, follows:

Two conies or none may be drawn through a fixed point

to be tangent to four fixed lines.

135. Double correspondence. It further appears that

two projective pencils of rays which have the same

center are in involution if one pair of rays correspond

to each other doubly. From this it is clear that \\v

might have defined six rays in involution as six rays

which pass through a point and also through six points

in involution. While this would have been entirely in

accord with the treatment which was given the corre-

sponding problem in the theory of harmonic points and

lines, it is more satisfactory, from an aesthetic point of

view, to build the theory of lines in involution on its own

base. The student can show, by methods entirely analo-

gous to those used in the second chapter, that involution

is a projective property; that is. six rays in involution are

cut by any transversal in six points in involution.
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136. Pencils of rays of the second order in involution.

We may also extend the notion of involution to pen-

cils of rays of the second order. Thus, the tangents to a

conic are in involution when they are corresponding rays

of two projective pencils of the second order superposed

upon the same conic, and when they correspond to each

other doubly. We have then the theorem

:

137. The intersections of corresponding rays of a pen-

cil of the second order in involution are all on a straight

line u, and the intersection of any two tangents ab, when

joined to the intersection of the corresponding tangents a'b',

gives a line which passes through a fixed point U, the pole

of the line u with respect to the conic.

138. Involution of rays determined by a conic. We
have seen in the theory of poles and polars (§ 103)

that if a point P moves along a line m, then the polar

of P revolves about a point. This pencil cuts out on m
another point-row P', projective also to P. Since the

polar of P passes through P', the polar of P' also passes

through P, so that the correspondence between P and

P' is double. The two point-rows are therefore in invo-

lution, and the double points, if any exist, are the points

where the line m meets the conic. A similar involution

of rays may be found at any point in the plane, corre-

sponding rays passing each through the pole of the other.

We have called such points and rays conjugate with

respect to the conic (§ 100). We may then state the

following important theorem

:

139. A conic determines on every line in its plane an

involution of points, corresponding points in the involution
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being conjugate with respect to the conic. Tin- double points,

if any exist, are the points where the lin. meets tlu

140. The dual theorem reads: A c»iti<- determines ai

every point in the plan*- an woohttion of rays, correspond

ing rays being conjugate with respect to the conic. The

double rays, if any exist, are ike tangents from tin- point

to the conic.

PROBLEMS

1. Two lines are drawn through a point on a conic so

as always to make right angles with each other. Show that

the lines joining the points where they meet the conic again

all pass through a fixed point.

2. Two lines are drawn through a fixed point on a conic

so as always to make equal angles with the tangent at that

point. Show that the lines joining the two points where the

lines meet the conic again all pass through a fixed point.

3. Four lines divide the plane into a certain number of

legions. Determine for each region whether two conies or

none may be drawn to pass through points of it and also

to be tangent to the four lines. (See § 144.)

4. If a variable quadrangle move in such a way as

always to remain inscribed in a fixed conic, while three of

its sides turn each around one of three fixed oollinear points,

then the fourth will also turn around a fourth fixed point

collinear with the other three.

5. State and prove the dual of problem 4.

6. Extend problem 4 as follows : If a variable polygon of

an even number of sides move in such a way as always to

remain inscribed in a fixed conic, while all its sides but one

pass through as many fixed collinear points, then the last side

will also pass through a fixed point collinear with the others.
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7. If a triangle QRS be inscribed in a conic, and if a

transversal s meet two of its sides in A and A', the third

side and the tangent at the opposite vertex in B and B', and

the conic itself in C and C', then A A', BB', CC are three

pairs of points in an involution.

8. Use the last exercise to solve the problem : Given five

points, Q, R, S, C, C', on a conic, to draw the tangent at any

one of them.

9. State and prove the dual of problem 7 and use it to

prove the dual of problem 8.

10. If a transversal cut two tangents to a conic in B and

B', their chord of contact in A, and the conic itself in P
and P', then the point A is a double point of the involution

determined by BB' and PP'.

11. State and prove the dual of problem 10.

12. If a variable conic pass through two given points,

P and /'', and if it be tangent to two given lines, the chord

of contact of these two tangents will always pass through

one of two fixed points on PP'.

13. Use the last theorem to solve the problem: Given

four points, P, ]>', Q, S, on a conic, and the tangent at one of

them, Q, to draw the tangent at any one of the other points, S.

14. Apply the theorem of problem 10 to the case of a

hyperbola where the two tangents are the asymptotes. Show
in this way that if a hyperbola and its asymptotes be cut

by a transversal, the segments intercepted by the curve .and

by the asymptotes respectively have the same middle point.

15. In a triangle circumscribed about a conic, any side is

divided harmonically by its point of contact and the point

where it meets the chord joining the points of contact of the

other two sides.



CHAPTER IX

METRICAL PROPERTIES OF INVOLUTIONS

141. Introduction of infinite point; center of involution.

We connect the projective theory of involution with the

metrical, as usual, by the introduction of the elements at

infinity. In an involution of points on a line the point

which corresponds to the infinitely distant point is called

Fig. 39

the center of the involution. Since corresponding points

in the involution have been shown to be harmonic con-

jugates with respect to the double points, the center is

midway between the double points when they exist. To

construct the center (Fig. 39) we draw as usual through

A and A' any two rays and cut them by a line parallel

to A A' in the points K and 31. Join these points to

B and B\ thus determining on AK and .4'iVthe points L

and N. LN meets AA' in the center of the involution.

84
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142. Fundamental metrical theorem. From the figure

we see that the triangles OLB' and PLM are similar, P
being the intersection of KM and LN. Also the tri-

angles KPN and BON are similar. We thus have

OB:PK=ON:PN
and OB':PM=OL:PL;
whence OB • OB' : PK PM= ON -OL:PN- PL.

In the same way, from the similar triangles OAL and

PKL, and also OA'N and PMN, we obtain

OA- OA':PK-PM=ON- OL-.PNPL,

and tli is, with the preceding, gives at once the funda-

mental theorem, which is sometimes taken also as the

definition of involution

:

OA • OA'=OB • OB' = constant,

or, in words,

The product of the distances from the center to two cor-

responding points in an involution of points is constant.

143. Existence of double points. Clearly, according

as the constant is positive or negative the involution

will or will not have double points. The constant is

the square of the distance from the center to the

double points. If A and A' lie both on the same side

of the center, the product OA • OA' is positive ; and if

they lie on opposite sides, it is negative. Take the case

where they both lie on the same side of the center, and

take also the pair of corresponding points BB'. Then,

since OA • OA' = OB OB', it cannot happen that B and

B' are separated from each other by A and A'. This is

evident enough if the points are on opposite sides of

the center. If the pairs are on the same side of the
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center, and B lies between A and A', so that OB is

greater, say, than OA, but less than OAr
, then, by the

equation OA OA' = OB • OB', we must have OB' also

less than OA' and greater than OA. A similar discus-

sion may be made for the ease where A and A' lie on

opposite sides of O. The results may be stated as

follows, without any reference to the center:

Given two pairs of points in <n> involution of points, if

the points of one pair are separated from each other by

the points of the other pair, then the involution has no

double points. If the points of one pair are not separated

from each other by the points of the other pair, then the

involution has two double points.

144. An entirely similar criterion decides whether an

involution of rays has or has not double rays, or whether

an involution of planes has or has not double planes.

145. Construction of an involution by means of circles.

The equation just derived, OA OA'—OB <)I>', indicates

another simple way in which

points of an involution of

points may be constructed.

Through A and A' draw any

circle, and draw also any cir-

cle through B and B' to cut

the first in the two points G
and G' (Fig. 40). Then any circle through G and G'

will meet the line in pairs of points in the involution

determined by AA' and BB '. For if such a circle meets

the line in the points CC", then, by the theorem in the

geometry of the circle which says that if any chord is

Fig. m
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drawn through a fixed point within a circle, the product

of its segments is constant in whatever direction the chord is

drawn, and if a secant line be drawn from a fixed point

without a circle, the product of the secant and its external

segment is constant in whatever direction the secant line is

drawn, we have OC • OC"= OG • OG' = constant. So that

for all such points OA OA' = <>B • OB'=OC • OC. Fur-

ther, the line GG' meets AA' in the center of the invo-

lution. To find the double points, if they exist, we draw

a tangent from to any of the circles through GG'.

Let T be the point of contact. Then lay off on the

line OA a line OF equal to OT. Then, since by the above

theorem of elementary geometry OA • OA' = OT2 = OF2
,

we have one double point F. The other is at an equal

distance on the other side of 0. This simple and effec-

tive method of constructing an involution of points is

often taken as the basis for the theory of involution.

In projective geometry, however, the circle, which is not

a figure that remains unaltered by projection, and is

essentially a metrical notion, ought not to be used to

build up the purely projective part of the theory.

146. It ought to be mentioned that the theoiy of

analytic geometry indicates that the circle is a special

conic section that happens to pass through two partic-

ular imaginary points on the line at infinity, called the

circular points and usually denoted by I and J. The

above method of obtaining a point-row in involution is,

then, nothing but a special case of the general theorem

of the last chapter (§ 125), which asserted that a system

of conies through four points will cut any line in the

plane in a point-row in involution.
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147. Pairs in an involution of rays which are at right

angles. Circular involution. In an involution of rays

there is no one ray which may be distinguished from

all the others as the point at infinity is distinguished

from all other points on a line. There is one pair of

rays, however, which does differ from all the others in

that for this particular pair the angle is a right angle.

This is most easily shown by using the construction

that employs circles, as indicated above. The centers of

all the circles through G and G' lie on the perpendicular

bisector of the line GG'. Let

this line meet the line AA'

in the point C (Fig. 41), and

draw the circle with center C
which goes through G and G'. v TT
This circle cuts out two points

M and M' in the involution. The rays GM and GM' are

clearly at right angles, being inscribed in a semicircle.

If, therefore, the involution of points is projected to

G, we have found two corresponding rays which are

at right angles to each other. Given now any invo-

lution of rays with center G, we may cut across it

by a straight line and proceed to find the two points

M and M' . Clearly there will be only one such pair

unless the perpendicular bisector of GG' coincides with

the line AA'. In this case every ray is at right angles

to its corresponding ray, and the involution is called

circular.

148. Axes of conies. At the close of the last chapter

(§ 140) we gave the theorem : A conic determines at every

point in ite plane an involution of ruys, oorrespondiitg rays
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being conjugate with respect to the conic. The double rags,

if ang exist, are the tangents from the point to the conic.

In particular, taking the point as the center of the

conic, we find that conjugate diameters form a system

of rays in involution, of which the asymptotes, if there

are any, are the double rays. Also, conjugate diameters

are harmonic conjugates with respect to the asymptotes.

By the theorem of the last paragraph, there are two

conjugate diameters which are at right angles to each

other. These are called axes. In the case of the parab-

ola, where the center is at infinity, and on the curve,

there are, properly speaking, no conjugate diameters.

While the line at infinity might be considered as con-

jugate to all the other diameters, it is not possible to

assign to it any particular direction, and so it cannot be

used for the purpose of defining an axis of a parabola.

There is one diameter, however, which is at right angles

to its conjugate system of chords, and this one is called

the axis of the parabola. The circle also furnishes an

exception in that every diameter is an axis. The invo-

lution in this case is circular, every ray being at right

angles to its conjugate ray at the center.

149. Points at which the involution determined by

a conic is circular. It is an important problem to dis-

cover whether for any conic other than the circle it is

possible to find any point in the plane where the invo-

lution determined as above by the conic is circular.

We shall proceed to the curious problem of proving the

existence of such points and of determining their num-

ber and situation. We shall then develop the important

properties of such points.
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150. It is clear, in the first place, that such a point

cannot be on the outside of the conic, else the involu-

tion would have double rays and such rays would have

to be at right angles to themselves. In the second

place, if two such points exist, the line joining them

must be a diameter and, indeed, an axis. For if F
and F' were two such points, then, since the conjugate

ray at F to the line FF' must be at right angles to it,

and also since the conjugate ray at F' to the line FF'

must be at right angles to it, the pole of FF' must

be at infinity in a direction at right angles to FF'.

The line FF' is then a diameter, and since it is at

right angles to its conjugate diameter, it must be an

axis. From this it follows also that the points we are

seeking must all lie on one of the two axes, else we
should have a diameter which does not go through

the intersection of the axes— the center of the conic.

At least one axis, therefore, must be free from any

such points.

151. Let now P be a point on one of the axes (Fig. 42),

and draw any ray through it, such as q. As q revolves

about P, its pole Q moves along a line at right angles

to the axis on which P lies, describing a point-row p
projective to the pencil of rays q. The point at infinity

in a direction at right angles to q also describes a point-

row projective to q. The line joining corresponding-

points of these two point-rows is always a conjugate

line to q and at right angles to q, or, as we may call it,

a conjugate normal to q. These conjugate normals to q,

joining as they do corresponding points in two projec-

tive point-rows, form a pencil of rays of the second
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order. But since the point at infinity on the point-row

Q corresponds to the point at infinity in a direction

at right angles to q, these point-rows are in perspec-

tive position and the normal conjugates of all the lines

through P meet in a point. This point lies on the

same axis with P, as is seen by taking q at right angles

to the axis on which P lies. The center of this pencil

may be called P', and thus we have paired the point P
with the point P'. By moving the point P along the

axis, and by keeping the

ray q parallel to a fixed

direction, we may see that

the point-row P and the

point-row P' are projective.

Also the correspondence is

double, and by starting

from the point P' we arrive

at the point P. Therefore

the point-rows P and P' are

in involution, and if only

the involution has double points, we shall have found

in them the points we are seeking. For it is clear that

the rays through P and the corresponding rays through

P' are conjugate normals ; and if P and P' coincide, we

shall have a point where all rays are at right angles

to their conjugates. We shall now show that the invo-

lution thus obtained on one of the two axes must have

double points.

152. Discovery of the foci of the conic. We know

that on one axis no such points as we are seeking can

lie (§ 150). The involution of points PP' on this axis

Fie. 42
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can therefore have no double points. Nevertheless, let

PP' and RE' be two pairs of corresponding points on

this axis (Fig. 43). Then we know that P and P' are

separated from each other by R and R' (§ 143). Draw
a circle on PP' as a diameter, and one on RI?' as a

diameter. These must intersect in

two points, F and F', and since the

center of the conic is the center

of the involution PP', RR', as is

easily seen, it follows that F and F'

are on the other axis of the conic.

Moreover, FR and FR' are con-

jugate normal rays, since RFR' is

inscribed in a semicircle, and the

two rays go one through R and the other through R'.

The involution of points PP', RR' therefore projects

to the two points F and F' in two pencils of rays in

involution which have for corresponding rays conjugate

normals to the conic. We may, then, say:

There are two and only two points of the plane where

the involution determined by the conic is circular. Tins,'

two points lie on one of the axes, at equal distances from

the center, on the inside of the conic. These points are

called the foci of the came

153. The circle and the parabola. The above dis-

cussion applies only to the central conies, apart from

the circle. In the circle the two foci fall together at the

center. In the case of the parabola, that part of the

investigation which proves the existence of two foci on

one of the axes will not hold, as we have but one
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axis. It is seen, however, that as /' moves to infinity,

carrying the line q with it, q becomes the line at infin-

ity, which for the parabola is a tangent line. Its pole

Q is thus at infinity and also the point P', so that P
and P' fall together at infinity, and therefore one focus

of the parabola is at infinity. There must therefore be

another, so that

A parabola hast one and only one foeus in the finite

part of the plane.

154. Focal properties of conies. We proceed to de-

velop some theorems which will exhibit the importance

of these points in the theory of the conic section.

Draw a tangent to the conic, and also the normal

at the point of contact P. These

two lines are clearly conjugate

normals. The two points T and

X, therefore, where they meet the

axis which contains the foci, are

corresponding points in the invo-

lution considered above, and are

therefore harmonic conjugates with respect to the foci

(Fig. 44); and if we join them to the point P, we

shall obtain four harmonic lines. But two of them

are at right angles to each other, and so the others

make equal angles with them (Problem 4, Chapter II).

Therefore

The linen joining a point on the conic to the foci make

equal angles with the tangent.

It follows that rays from a source of light at one

foeus are reflected by an ellipse to the other.
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155. In the case of the parabola, where one of the

foci must be considered to be at infinity in the direction

of the diameter, we have

A diameter makes the same

angle with the tangent at its

extremity as that tangent does

with the line from its point of

contact to the focus (Fig. 4.")). Fig. 45

156. This last theorem is the basis for the construc-

tion of the parabolic reflector. A ray of light from the

focus is reflected from such a reflector in a direction

parallel to the axis of the reflector.

157. Directrix. Principal axis. Vertex. The polar of

the focus with respect to the conic is called the directrix*

The axis which contains the foci is called the principal

axis, and the intersection of the axis with the curve is

called the vertex of the curve. The directrix is at right

angles to the principal axis. In a parabola the vertex

is equally distant from the focus and the directrix,

these three points and the point at infinity on the axis

being four harmonic points. In the ellipse the vertex is

nearer to the focus than it is to the directrix, for the

same reason, and in the hyperbola it is farther from

the focus than it is from the directrix.

158. Another definition of a conic. Let P be any point

on the directrix through which a line is drawn meeting

the conic in the points A and B (Fig. 46). Let the tan-

gents at A and B meet in 1\ and call the focus F. Then

TF and PF are conjugate lines, and as they pass through

a focus they must be at right angles to each other. Let
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TF meet AB in C. Then P, A, C, B are four harmonic

points. Project these four points parallel to TF upon

the directrix, and we then get

the four harmonic points P,

M, Q, iV". Since, now, TFP is

a right angle, the angles MFQ
and NFQ are equal, as well

as the angles AFC and BFC.

Therefore the triangles MAF
and XFB are similar, and

FA : AM= FB : BN. Dropping

perpendiculars AA' and BB'

upon the directrix, this be-

comes FA : AA'=FB : BB 1

. We
have thus the property often taken as the definition

of a conic

:

The ratio of the distances from a point on the conic to

the fociis and the directrix is constant.

159. Eccentricity. By taking the point at the vertex

of the conic, we note that this ratio is less than unity

for the ellipse, greater than unity for the hyperbola,

and equal to unity for the pa-

rabola. This ratio is called the

eccentricity.

160. Sum or difference of focal

distances. The ellipse and the

hyperbola have two foci and

two directrices. The eccentricity, of course, is the same

for one focus as for the other, since the curve is sym-

metrical with respect to both. If the distances from
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Fig. 48

a point on a conic to the two foci are r and r', and

the distances from the same point to the corresponding

directrices are d and d'

(Fig. 47), we have r:d =
r''.d'=(r±rJy.(d±d''). In the

ellipse (d + d'} is constant,

being the distance between

the directrices. In the hyper-

bola this distance is (d — ef).

It follows (Fig. 48) that

In the ellipse the sum of the

focal distances of any point

on the curve is constant, and

in the hyperbola the difference between the focal distances

is constant.

PROBLEMS

1. Construct the axis of a parabola, given four tangents.

2. Given two conjugate lines at right angles to each

other, and let them meet the axis which has no foci on it

in the points A and B. The circle on AB as diameter will

pass through the foci of the conic.

3. Given the axes of a conic in position, and also a

tangent with its point of contact, to construct the foci and

determine the length of the axes.

4. Given the tangent at the vertex of a parabola, and

two other tangents, to find the focus.

5. The locus of the center of a circle touching two given

circles is a conic with the centers of the given circles for

its foci.

6. Given the axis of a parabola and a tangent, with its

point of contact, to find the focus.
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7. The locus of the center of a circle which touches a

given line and a given circle consists of two parabolas.

8. Let F and F1 be the foci of an ellipse, and P any

point on it. Produce FP to G, making PG equal to PF'.

Find the locus of G.

9. If the points G of a circle be folded over upon a

point F, the creases will all be tangent to a conic. If F is

within the circle, the conic will be an ellipse ; if F is without

the circle, the conic will be a hyperbola.

10. If the points G in the last example be taken on a

straight line, the locus is a parabola.

11. Find the foci and the length of the principal axis of

the conies in problems 9 and 10.

12. In problem 10 a correspondence is set up between

straight lines and parabolas. As there is a fourfold infinity

of parabolas in the plane, and only a twofold infinity of

straight lines, there must be some restriction on the par-

abolas obtained by this method. Find and explain this

restriction.

13. State and explain the similar problem for problem 9.

14. The last four problems are a study of the conse-

quences of the following transformation : A point O is fixed

in the plane. Then to any point P is made to correspond

the line p at right angles to OP and bisecting it. In this

correspondence, what happens to p when P moves along a

straight line ? What corresponds to the theorem that two

lines have only one point in common ? What to the theorem

that the angle sum of a triangle is two right angles ? Etc.



CHAPTER X

ON THE HISTORY OF SYNTHETIC PROJECTIVE GEOMETRY

161. Ancient results. The theory of synthetic pro-

jective geometry as we have built it up in this course is

less than a century old. This is not to say that many of

the theorems and principles involved were not discov-

ered much earlier, but isolated theorems do not make a

theory, any more than a pile of bricks makes a building.

The materials for our building have been contributed

by many different workmen from the days of Euclid

down to the present time. Thus, the notion of four

harmonic points was familiar to the ancients, who con-

sidered it from the metrical point of view as the division

of a line internally and externally in the same ratio *
;

* The more general notion of (inharmonic ratio, which includes

the harmonic ratio as a special case, was also known to the ancients.

While we have not found it necessary to make use of the anharmoiuc
ratio in building up our theory, it is so frequently met with in treatises

on geometry that some account of it should be given.

Consider any four points, A, B, C, D, on a line, and join them to

any point S not on that line. Then the triangles ASB, CSD, ASD,
CSB, having all the same altitude, are to each other as their bases.

Also, since the area of any triangle is one half the product of any two
of its sides by the sine of the angle included between them, we have

AB x CD_AS x BS sin ASB xCSxDS sin CSD_&in ASBx sinCSD

AD x CB~AS x DS sin ASD xCSxBS sin CSB~ sin ASD x sin CSB'

Now the fraction on the right would be unchanged if instead of the

points A, B, C, D we should take any other four points A', B', C, D"

lying on any other line cutting across SA, SB, SC, SD. In other

98
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the involution of six points cut out by any transversal

which intersects the sides of a complete quadrilateral

words, the fraction on the left is unaltered in value if the points

A, B, C, D are replaced by any other four points perspective to them.

Again, the fraction on the left is unchanged if some other point were
taken instead of <S. In other words, the fraction on the right is

unaltered if we replace the four lines SA, SB, SC, SD by any other four

lines perspective to them. The fraction on the left is called the anhar-

monic ratio of the four points A, B, C, D ; the fraction on the right

is called the anharmonic ratio of the four lines SA, SB, SC, SD. The
anharmonic ratio of four points is sometimes written (ABCD), so that

AB * CD =
{
ABCD).ADxCB K '

If we take the points in different order, the value of the anharmonic

ratio will not necessarily remain the same. The twenty-four different

ways of writing them will, however, give not more than six different

values for the anharmonic ratio, for by writing out the fractions

which define them we can find that (ABCD) = (BADC) = (CDAB) =
(DCBA). If we write (ABCD) = a, it is not difficult to show that

the six values are

a ; 1/a ; 1 - a ; 1/(1 -a); (a- \)/a ; a/(a - 1).

The proof of this we leave to the student.

It A, B, C, D are four harmonic points (see Fig. 6, p. 22), and a quad-

rilateral KLMX is constructed such that KL and MN pass through

A, KN and LM through C, LN through B, and KM through D, then,

projecting A, B, C, D from L upon KM, we have (ABCD) = (KOMD),
where O is the intersection of KM with LN. But, projecting again

the points K, 0, M, D from N back upon the line AB, we have

(KOMD) = (CBAD). From this we have

(ABCD) = (CBAD),

or a = 1/a

;

whence a = l or a = — 1. But it is easy to see that a = 1 implies that

two of the four points coincide. For four harmonic points, therefore,

the six values of the anharmonic ratio reduce to three, namely, 2, -J-,

and —1. Incidentally we see that if an interchange of any two
points in an anharmonic ratio does not change its value, then the

four points are harmonic.

Many theorems of projective geometry are succinctly stated in

terms of anharmonic ratios. Thus, the anharmonic ratio of any four
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was studied by Pappus* ; but these notions were not

made the foundation for any general theory. Taken by

themselves, they are of small consequence ; it is their

relation to other theorems and sets of theorems that

gives them their importance. The ancients were doubt-

less familiar with the theorem, Two lines determine a

j>"ii(t, and two points determine a line, but they had

no glimpse of the wonderful law of duality, of which

this theorem is a simple example. The principle of

projection, by which many properties of the conic sec-

tions may be inferred from corresponding properties

of the circle which forms the base of the cone from

which they are cut— a principle so natural to modern

mathematicians— seems not to have occurred to the

Greeks. The ellipse, the hyperbola, and the parabola

elements of a form is equal to the anharmonic ratio of the corresponding

four elements in any form protectively related to it. The anharmonic

ratio of the lines joining any four fixed points on a conic to a variable

fifth point on the conic is constant. Tlie

locus of points from which four points

in a plane are seen along four rays of

constant anharmonic ratio is a conic

through thefour points. We leave these

theorems for the student, who may
also justify the following solution of

the problem : Given three points and

a certain anharmonic ratio, to find a

fourth point which shall have with the

given three the given anliarmonic ratio.

Let A , B, D be the three given points

(Fig. 49). On any convenient line

through A take two points B' and Tf Fig. 49
such that AB'/AIf is equal to the

given anharmonic ratio. Join BB' and DD' and let the two lines

meet in S. Draw through S a parallel to AR. This line will meet

AB in the required point C.

* Pappus, Mathematicae Collectiones, vii, 129.
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were to them entirely different curves, to be treated

separately with methods appropriate to each. Thus the

focus of the ellipse was discovered some five hundred

years before the focus of the parabola! It was not till

1522 that Verner* of Xurnberg undertook to demon-

strate the properties of the conic sections by means of

the circle.

162. Unifying principles. In the early years of the

seventeenth century— that wonderful epoch in the

history of the world which produced a Galileo, a Kep-

ler, a Tycho Brahe, a Descartes, a Desargues, a Pascal,

a Cavalieri, a Yv'allis, a Fermat, a Huygens, a Bacon,

a Napier, and a goodly array of lesser lights, to say

nothing of a Rembrandt or of a Shakespeare— there

began to appear certain unifying principles connecting

the great mass of material dug out by the ancients.

Thus, in 160-4 the great astronomer Kepler f introduced

the notion that parallel lines should be considered as

meeting at an infinite distance, and that a parabola is at

once the limiting case of an ellipse and of a hyperbola.

He also attributes to the parabola a " blind focus

"

(caecus focus) at infinity on the axis.

163. Desargues. In 1639 Desargues,^ an architect of

Lyons, published a little treatise on the conic sections,

in which appears the theorem upon which we have

founded the theory of four harmonic points (§ 25).

* J.Verneri, Libellus super vigintiduobus elementisconicis, etc. 1522.

t Kepler, Ad Vitellionem paralipomena quibus astronomiae pars

optica traditur. 1604.

X Desargues, Bruillon-project d'une atteiute aux e^nements des

rencontres d'un cdne avec un plan. 1639. Edited and analyzed by

Poudra, 1864.
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Desargues, however, does not make use of it for that

purpose. Four harmonic points are for him a special

case of six points in involution when two of the three

pairs coincide giving double points. His development

of the theory of involution is also different from the

purely geometric one which we have adopted, and is

based on the theorem (§ 142) that the product of the

distances of two conjugate points from the center is

constant. He also proves the projective character of

an involution of pomts by showing that when six lines

pass through a point and through six points in involu-

tion, then any transversal must meet them in six points

which are also in involution.

164. Poles and polars. In this little treatise is also

contained the theory of poles and polars. The polar

line is called a traversal.* The harmonic properties of

poles and polars are given, but Desargues seems not

to have arrived at the metrical properties which result

when the infinite elements of the plane are introduced.

Thus he says, " When the traversal is at an infinite

distance, all is unimaginable."

165. Desargues's theorem concerning conies through

four points. We find in this little book the beautiful

theorem concerning a quadrilateral inscribed in a conic

section, which is given by his name in § 138. The

theorem is not given in terms of a system of conies

through four points, for Desargues had no conception of

* The term 'pole' was first introduced, in the sense in which we
have used it, in 1810, by a French mathematician named Servois

(Gergonne, Annates des MatMmatiques, I, 337), and the corresponding

term ' polar ' by the editor, Gergonne, of this same journal three years

later.
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any such system. He states the theorem, in effect, as

follows : Given a simple quadrilateral inscribed, in a conic

section, every transversal meets the conic and the four sides

of the quadrilateral in six points which are in involution.

166. Extension of the theory of poles and polars to

space. As an illustration of his remarkable powers of

generalization, we may note that Desargues extended

the notion of poles and polars to space of three dimen-

sions for the sphere and for certain other surfaces of

the second degree. This is a matter which has not

been touched on in this book, but the notion is not

difficult to grasp. If we draw through any point P in

space a line to cut a sphere in two points, A and B, and

then construct the fourth harmonic of P with respect to

A and B, the locus of this fourth harmonic, for various

lines through P, is a plane called the polar plane of P
with respect to the sphere. With this definition and theo-

rem one can easily find dual relations between points

and planes in space analogous to those between points and

lines in a plane. Desargues closes his discussion of this

matter with the remark, "Similar properties may be

found for those other solids which are related to the

sphere in the same way that the conic section is to the

circle." It should not be inferred from this remark,

however, that he was acquainted with all the different

varieties of surfaces of the second order. The ancients

were well acquainted with the surfaces obtained by

revolving an ellipse or a parabola about an axis. Even

the hyperboloid of two sheets, obtained by revolving the

hyperbola about its major axis, was known to them,

but probably not the hyperboloid of one sheet, which
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results from revolving a hyperbola about the other

axis. Al\ the other solids of the second degree were

probably unknown until their discovery by Euler.*

167. Desargues had no conception of the conic section

as the locus of intersection of corresponding rays of two

projective pencils of rays. He seems to have tried to

describe the curve by means of a pair of compasses,

moving one leg back and forth along a straight line

instead of holding it fixed as in drawing a circle. He
does not attempt to define the law of the movement

necessary to obtain a conic by this means.

168. Reception of Desargues's work. Strange to say,

Desargues's immortal work was heaped with the most vio-

lent abuse and held up to ridicule and scorn !
" Incredi-

ble errors ! Enormous mistakes and falsities ! Really it

is impossible for anyone who is familiar with the science

concerning which he wishes to retail his thoughts, to

keep from laughing
!

" Such were the comments of re-

viewers and critics. Nor were his detractors altogether

ignorant and uninstructed men. In spite of the devotion

of his pupils and in spite of the admiration and friend-

ship of men like Descartes, Fermat, Mersenne, and

Roberval, his book disappeared so completely that two

centuries after the date of its publication, when the

French geometer Chasles wrote his history of geometry,

there was no means of estimating the value of the work

done by Desargues. Six years later, however, in 1845,

Chasles found a manuscript copy of the " Bruillon-

project," made by Desargues's pupil, De la Hire.

* Euler, Introductio in analysin inlinitorum, Appendix, cap. V.

1748.
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169. Conservatism in Desargues's time. It is not neces-

sary to suppose that this effacement of Desargues's work

for two centuries was due to the savage attacks of his

critics. All this was in accordance with the fashion of

the time, and no man escaped bitter denunciation who

attempted to improve on the methods of the ancients.

Those were days when men refused to believe that a

heavy body falls at the same rate as a lighter one, even

when Galileo made them see it with their own eyes

at the foot of the tower of Pisa. Could they not turn

to the exact page and line of Aristotle which declared

that the heavier body must fall the faster !
" I have

read Aristotle's writings from end to end, many times,"

wrote a Jesuit provincial to the mathematician and

astronomer, Christoph Scheiner, at Ingolstadt, whose

telescope seemed to reveal certain mysterious spots on

the sun, " and I can assure you I have nowhere found

anything similar to what you describe. Go, my son, and

tranquilize yourself ; be assured that what you take for

spots on the sun are the faults of your glasses, or of

your eyes." The dead hand of Aristotle barred the

advance in every department of research. Physicians

would have nothing to do with Harvey's discoveries

about the circulation of the blood. " Nature is accused

of tolerating a vacuum !

" exclaimed a priest when Pas-

cal began his experiments on the Puy-de-Dome to show

that the column of mercury in a glass tube varied in

height with the pressure of the atmosphere.

170. Desargues's style of writing. Nevertheless, author-

ity counted for less at this time in Paris than it did in

Italy, and the tragedy enacted in Rome when Galileo
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was forced to deny his inmost convictions at the bid-

ding of a brutal Inquisition could not have been staged

in France. Moreover, in the little company of scientists

of which Desargues was a member the utmost liberty

of thought and expression was maintained. One very

good reason for the disappearance of the work of De-

sargues is to be found in his style of writing. He failed

to heed the very good advice given him in a letter from

his warm admirer Descartes.* " You may have two de-

signs, both very good and very laudable, but which do

not require the same method of procedure : The one is

to write for the learned, and show them some new prop-

erties of the conic sections which they do not already

know; and the other is to write for the curious un-

learned, and to do it so that this matter which until

now has been understood by only a very few, and which

is nevertheless very useful for perspective, for paint-

ing, architecture, etc., shall become common and easy to

all who wish to study them in your book. If you have

the first idea, then it seems to me that it is necessary

to avoid using new terms ; for the learned are already

accustomed to using those of Apollonius, and will not

readily change them for others, though better, and thus

yours will serve only to render your demonstrations

more difficult, and to turn away your readers from your

book. If you have the second plan in mind, it is cer-

tain that your terms, which are French, and conceived

with spirit and grace, will be better received by persons

not preoccupied with those of the ancients. . . . But, if

you have that intention, you should make of it a great

* (Euvres de Desargues, t. II, 132.
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volume : explain it all so fully and so distinctly that

those gentlemen who cannot study without yawning

;

who cannot distress their imaginations enough to grasp

a proposition in geometry, nor turn the leaves of a book

to look at the letters in a figure, shall find nothing in

your discourse more difficult to understand than the

description of an enchanted palace in a fairy story."

The point of these remarks is apparent when we note

that Desargues introduced some seventy new terms in

his little book, of which only one, involution, has sur-

vived. Curiously enough, this is the one term singled

out for the sharpest criticism and ridicule by his re-

viewer, De Beaugrand.* That Descartes knew the char-

acter of Desargues's audience better than he did is also

evidenced by the fact that De Beaugrand exhausted his

patience in reading the first ten pages of the book.

171. Lack of appreciation of Desargues. Desargues's

methods, entirely different from the analytic methods

just then being developed by Descartes and Fermat,

seem to have been little understood. " Between you

and me," wrote Descartes f to Mersenne, " I can hardly

form an idea of what he may have written concerning

conies." Desargues seems to have boasted that he owed

nothing to any man, and that all his results had come

from his own mind. His favorite pupil, De la Hire, did

not realize the extraordinary simplicity and generality

of his work. It is a remarkable fact that the only one

of all his associates to understand and appreciate the

methods of Desargues should be a lad of sixteen years.'

* CEuvres de Desargues, t. II, 370.

t CEuvres de Descartes, t. II, 499.
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172. Pascal and his theorem. One does not have to

believe all the marvelous stories of Pascal's admiring

sisters to credit him with wonderful precocity. We have

the fact that in 1640, when he was sixteen years old,

he published a little placard, or poster, entitled "Essay

pour les conique," * in which his great theorem appears

for the first time. His manner of putting it may be a

little puzzling to one who has only seen it in the form

given in this book, and it may be worth while for the

student to compare the two methods of stating it. It is

given as follows : "If in the plane of M, S, Q we draw

through M the two lines MK and MV, and through the

point S the two lines SK and SV, and let K be the inter-

section of MK and SK ; V the intersection of MV and

SV; A the intersection of MA and SA (A is the inter-

section of SV and MK), and fi the intersection of MV
and SK ; and if through two of the four points A, K,

p, V, which are not in the same straight line with M and

S, such as K and V, we pass the circumference of a circle

cutting the lines MV, MP, SV, SK in the points 0, P„

Q, N; I say that the lines MS, NO, PQ are of the same

order.'''' (By w
lines of the same order " Pascal means

lines which meet in the same point or are parallel.) By
projecting the figure thus described upon another plane

he is able to state his theorem for the case where the

circle is replaced by any conic section.

173. It must be understood that the " Essay " was

only a resume of a more extended treatise on conies

which, owing partly to Pascal's extreme youth, partly

to the difficulty of publishing scientific works in those

* CEuvros de Pascal, par Brunschvig et Boutroux, t. I. 262,
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days, and also to his later morbid interest in religious

matters, was never published. Leibniz * examined a copy

of the complete work, and has reported that the great

theorem on the mystic hexagram was made the basis of

the whole theory, and that Pascal had deduced some four

hundred corollaries from it. This would indicate that

here was a man able to take the unconnected materials

of projective geometry and shape them into some such

symmetrical edifice as we have to-day. Unfortunately

for science, Pascal's early death prevented the further

development of the subject at his hands.

174. In the
M Essay " Pascal gives full credit to

Desargues, saying of one of the other propositions,
?t We prove this property also, the original discoverer of

which is M. Desargues, of Lyons, one of the greatest

minds of this age . . . and I wish to acknowledge that

I owe to him the little which I have discovered." This

acknowledgment led Descartes to believe that Pascal's

theorem should also be credited to Desargues. But in

the scientific club which the young Pascal attended

in company with his father, who was also a scientist

of some reputation, the theorem went by the name of
1

la Pascalia,' and Descartes's remarks do not seem to

have been taken seriously, which indeed is not to be

wondered at, seeing that he was in the habit of giving

scant credit to the work of other scientific investigators

than himself.

175. De la Hire and his work. De la Hire added

little to the development of the subject, but he did put

into print much of what Desargues had already worked

* Chasles, Histoire de la G6om6trie, 70.
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out, not fully realizing, perhaps, how much was his

own and how much he owed to his teacher. Writing in

1679, he says,* "I have just read for the first time

M. Desargues's little treatise, and have made a copy

of it in order to have a more perfect knowledge of it."

It was this copy that saved the work of his master

from oblivion. De la Hire should be credited, among

other things, with the invention of a method by which

figures in the plane may be transformed into others

of the same order. His method is extremely interest-

ing, and will serve as an exercise for the student in

synthetic projective geometry. It is as follows: Draw

two parallel lines, a ami l>, and select a point P in their

plane. Through any point M of the plane draw a line

meeting a in A and h in B. Draw a line through B
parallel to APy and let it meet MI' in the point M*. It

may be shown that the point M' thus obtained does not

depend at all on the particular rag JfAB used in deter*

mining it, so that we have set up a one-to-one correspond nee

between the points M and 31' in the plane. The student

may show that as M describes a point-row, M' describes

a point-row projective to it As M describes a conic,

M' describes another conic. This sort of correspon-

dence is called a collineati<>u. It will be found that the

points on the line b transform into themselves, as does

also the single point P. Points on the line a trans-

form into points on the line at infinity- The student

should remove the metrical features of the construction

and take, instead of two parallel lines a and b, any

two lines which may meet in a finite part of the plane.

* CEuvres de Desargues, t. I, 231.
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The collineation is a special one in that the general

one has an invariant triangle instead of an invariant

point and line.

176. Descartes and his influence. The history of syn-

thetic projective geometry has little to do with the work

of the great philosopher Descartes, except in an indirect

way. The method of algebraic analysis invented by

him, and the differential and integral calculus which

developed from it, attracted all the interest of the

mathematical world for nearly two centuries after

Desargues, and synthetic geometry received scant atten-

tion during the rest of the seventeenth century and for

the greater part of the eighteenth century. It is difficult

for moderns to conceive of the richness and variety of

the problems which confronted the first workers in the

calculus. To come into the possession of a method

which would solve almost automatically problems which

had baffled the keenest minds of antiquity ; to be able

to derive in a few moments results which an Archimedes

had toiled long and patiently to reach or a Galileo had

determined experimentally ; such was the happy expe-

rience of mathematicians for a century and a half after

Descartes, and it is not to be wondered at that along

with this enthusiastic pursuit of new theorems in anal-

ysis should come a species of contempt for the methods

of the ancients, so that in his preface to his "Mechanique

Analytique," published in 1788, Lagrange boasts, " One

will find no figures in this work." But at the close of

the eighteenth century the field opened up to research

by the invention of the calculus began to appear so

thoroughly explored that new methods and new objects
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of investigation began to attract attention. Lagrange

himself, in his later years, turned in weariness from

analysis and mechanics, and applied himself to chemistry,

physics, and philosophical speculations. " This state of

mind," says Darboux,* " we find almost always at certain

moments in the lives of the greatest scholars." At any

rate, after lying fallow for almost two centuries, the

field of pure geometry was attacked with almost religious

enthusiasm.

177. Newton and Maclaurin. But in hastening on

to the epoch of Poncelet and Steiner we should not

omit to mention the work of Xewton and Maclaurin.

Although their results were obtained by analysis for the

most part, nevertheless they have given us theorems

which fall naturally into the domain of synthetic pro-

jective geometry. Thus Newton's " organic method " f

of generating conic sections is closely related to the

method which we have made use of in Chapter III.

It is as follows: If two angles, AOS and AO'S, of given

magnitudes turn about their respective vertices, and O',

in such a wag that the point of intersection, S, of one pair

of arms alivags lies on a straight line, the point of inter-

section, A, of the other pair of arms will describe a conic.

The proof of this is left to the student.

178. Another method of generating a conic is due to

Maclaurin.
:f

The construction, which we also leave for

the student to justify, is as follows : If a triangle C'PQ

move in such a wag that its sides, PQ, QC', and C'P, turn

* See Ball, History of Mathematics, French edition, t. II, 233.

f Newton, Principia, lib. i, lemma XXI.

J Maclaurin, Philosophical Transactions of the Royal Society of

London, 1735.
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around three fixed points, R, A, B, respectively, while two of

its vertices, P, Q, slide along two fixed lines, CB' and CA',

respectively, then the remaining vertex will describe a conic.

179. Descriptive geometry and the second revival.

The second revival of pure geometry was again to take

place at a time of great intellectual activity. The period

at the close of the eighteenth and the beginning of

the nineteenth century is adorned with a glorious list

of mighty names, among which are Gauss, Lagrange,

Legendre, Laplace, Monge, Carnot, Poncelet, Cauchy,

Fourier, Steiner, Von Staudt, Mobius, Abel, and many

others. The renaissance may be said to date from the in-

vention by Monge * of the theory of descriptive geometry.

Descriptive geometry is concerned with the representa-

tion of figures in space of three dimensions by means

of space of two dimensions. The method commonly

used consists in projecting the space figure on two

planes (a vertical and a horizontal plane being most

convenient), the projections being made most simply

for metrical purposes from infinity in directions perpen-

dicular to the two planes of projection. These two

planes are then made to coincide by revolving the hori-

zontal into the vertical about their common line. Such

is the method of descriptive geometry which in the

hands of Monge acquired wonderful generality and ele-

gance. Problems concerning fortifications were worked

so quickly by this method that the commandant at the

military school at Mezieres, where Monge was a drafts-

man and pupil, viewed the results with distrust. Monge

afterward became professor of mathematics at Mezieres

* Monge, G6ou\6tvie Descriptive. 1800.
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and gathered around him a group of students destined

to have a share in the advancement of pure geometry.

Among these were Hachette, Brianchon, Dupin, Chasles,

Poncelet, and many others.

180. Duality, homology, continuity, contingent rela-

tions. Analytic geometry had left little to do in the

way of discovery of new material, and the mathemati-

cal world was ready for the construction of the edifice.

The activities of the group of men that followed Monge
were directed toward this end, and we now begin to

hear of the great unifying notions of duality, homol-

ogy, continuity, contingent relations, and the like. The

devotees of pure geometry were beginning to feel the

need of a basis for their science which should be at

once as general and as rigorous as that of the analysts.

Their dream was the building up of a system of geom-

etry which should be independent of analysis. Monge,

and after him Poncelet, spent much thought on the so-

called "principle of continuity," afterwards discussed

by Chasles under the name of the "principle of con-

tingent relations." To get a clear idea of this principle,

consider a theorem in geometry in the proof of which

certain auxiliary elements are employed. These ele-

ments do not appear in the statement of the theorem,

and the theorem might possibly be proved without them.

In drawing the figure for the proof of the theorem,

however, some of these elements may not appear, or,

as the analyst would say, they become imaginary. " No

matter," says the principle of contingent relations, "the

theorem is true, and the proof is valid whether the

elements used hi the proof are real or imaginary."
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181. Poncelet and Cauchy. The efforts of Poncelet

to compel the acceptance of this principle independent

of analysis resulted in a bitter and perhaps fruitless

controversy between him and the great analyst Cauchy.

In his review of Poncelet's great work on the projec-

tive properties of figures * Cauchy says, " In his pre-

liminary discourse the author insists once more on the

necessity of admitting into geometry what he calls the

' principle of continuity.' We have already discussed

that principle . . . and we have found that that prin-

ciple is, properly speaking, only a strong induction,

which cannot be indiscriminately applied to all sorts of

questions in geometry, nor even in analysis. The rea-

sons which we have given as the basis of our opinion

are not affected by the considerations which the author

has developed in his Traite des Proprietes Projectives

des Figures." Although this principle is constantly made

use of at the present day in all sorts of investigations,

careful geometricians are in agreement with Cauchy

in this matter, and use it only as a convenient work-

ing tool for purposes of exploration. The one-to-one

correspondence between geometric forms and algebraic

analysis is subject to many and important exceptions.

The field of analysis is much more general than the

field of geometry, and while there may be a clear

notion in analysis to correspond to every notion in

geometry, the opposite is not true. Thus, in analysis

we can deal with four coordinates as well as with

three, but the existence of a space of four dimensions

* Poncelet, Traite" des Propri6te\s Projectives des Figures. 1822.

(See p. 367, Vol. II, of the edition of 1866.)
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to correspond to it does not therefore follow. When
the geometer speaks of the two real or imaginary inter-

sections of a straight line with a conic, he is really

speaking the language of algebra. Apart from the

algebra involved, it is the height of absurdity to try to

distinguish between the two points in which a line

fails to meet a conic!

182. The work of Poncelet. But Poncelet's right to

the title "The Father of Modern Geometry" does not

stand or fall with the principle of contingent relations.

In spite of the fact that he considered this principle

the most important of all his discoveries, his reputation

rests on more solid foundations. He was the first to

study figures in homology, which is, in effect, the colline-

ation described in § 175, where corresponding points

lie on straight lines through a fixed point. He was the

first to give, by means of the theory of poles and polars,

a transformation by which an element is transformed

into another of a different sort. Point-to-point trans-

formations will sometimes generalize a theorem, but

the transformation discovered by Poncelet may throw a

theorem into one of an entirely different aspect. The

principle of duality, first stated in definite form by

Gergonne,* the editor of the mathematical journal in

which Poncelet published his researches, was based by

Poncelet on his theory of poles and polars. He also put

into definite form the notions of the infinitely distant

elements in space as all lying on a plane at infinity.

183. The debt which analytic geometry owes to syn-

thetic geometry. The reaction of pure geometry on

* Gergonne, Annates de Mathtmatiques, XVI, 200. 1820.
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analytic geometry is clearly seen in the development of

the notion of the class of a curve, which is the number

of tangents that may be drawn from a point in a plane

to a given curve lying in that plane. If a point moves

along a conic, it is easy to show— and the student

is recommended to furnish the .proof— that the polar

line with respect to a conic remains tangent to another

conic. This may be expressed by the statement that the

conic is of the second order and also of the second class.

It might be thought that if a point moved along a

cubic curve, its polar line with respect to a conic would

remain tangent to another cubic curve. This is not the

case, however, and the investigations of Poncelet and

others to determine the class of a given curve were

afterward completed by Plucker. The notion of geo-

metrical transformation led also to the very important

developments in the theory of invariants, which, geo-

metrically, are the elements and configurations which

are not affected by the transformation. The anharmonic

ratio of four points is such an invariant, since it remains

unaltered under all projective transformations.

184. Steiner and his work. In the work of Poncelet

and his contemporaries, Chasles, Brianchon, Hachette,

Dupin, Gergonne, and others, the anharmonic ratio en-

joyed a fundamental role. It is made also the basis of

the great work of Steiner,* who was the first to treat

of the conic, not as the projection of a circle, but as the

locus of intersection of corresponding rays of two pro-

jective pencils. Steiner not only related to each other,

* Steiner, Systematische Entwickelung der Abhangigkeit geome-

trisolier Gestalten von einander. 1832.
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in one-to-one correspondence, point-rows and pencils

and all the other fundamental forms, but he set into

correspondence even corves and surfaces of higher de-

grees. This new and fertile conception gave him an

easy and direct route into the most abstract and diffi-

cult regions of pure geometry. Much of his work was

given without any indication of the methods by which

he had arrived at it, and many of his results have only

recently been verified.

185. Von Staudt and his work. To complete the the-

ory of geometry as we have it to-day it only remained

to free it from its dependence on the semimetrical basis

of the enharmonic ratio. This work was accomplished by

Von Staudt,* who applied himself to the restatement

of the theory of geometry in a form independent of

analytic and metrical notions. The method which has

been used in Chapter II to develop the notion of four

harmonic points by means of the complete quadrilateral

is due to Von Staudt. His work is characterized by a

most remarkable generality, in that he is able to discuss

real and imaginary forms with equal ease. Thus he

assumes a one-to-one correspondence between the points

and lines of a plane, and defines a conic as the locus

of points which lie on their corresponding lines, and a

pencil of rays of the second order as the system of lines

which pass through their corresponding points. The
point-row and pencil of the second order may be real

or imaginary, but his theorems still apply. An illustra-

tion of a correspondence of this sort, where the conic

is imaginary, is given in § 15 of the first chapter. In

* Von Staudt, Geometric der Lage. 1847.
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defining conjugate imaginary points on a line, Von

Staudt made use of an involution of points having no

double points. His methods, while elegant and power-

ful, are hardly adapted to an elementary course, but

Reye* and others have done much toward simplifying

his presentation.

186. Recent developments. It would be only confus-

ing to the student to attempt to trace here the later

developments of the science of projective geometry. It

is concerned for the most part with curves and surfaces

of a higher degree than the second. Purely synthetic

methods have been used with marked success in the

study of the straight line in space. The struggle be-

tween analysis and pure geometry has long since come

to an end. Each has its distinct advantages, and the

mathematician who cultivates one at the expense of the

other will never attain the results that he would attain

if both methods were equally ready to his hand. Pure

geometry has to its credit some of the finest discov-

eries in mathematics, and need not apologize for having

been born. The day of its usefulness has not passed

with the invention of abridged notation and of short

methods in analysis. While we may be certain that any

geometrical problem may always be stated in analytic

form, it does not follow that that statement will be

simple or easily interpreted. For many mathematicians

the geometric intuitions are weak, and for such the

method will have little attraction. On the other hand,

there will always be those for whom the subject will

have a peculiar glamor— who will follow with delight

* Keye, Geometrie der Lage. Translated by Holgate, 1897.



120 PROJECTIVE GEOMETRY

the curious and unexpected relations between the forms

of space. There is a corresponding pleasure, doubtless,

for the analyst in tracing the marvelous connections

between the various fields in which he wanders, and it

is as absurd to shut one's eyes to the beauties in one

as it is to ignore those in the other. "Let us cultivate

geometry, then," says Darboux,* "without wishing in

all points to equal it to its rival. Besides, if we were

tempted to neglect it, it would not be long in finding

in the applications of mathematics, as once it has al-

ready done, the means of renewing its life and of

developing itself anew. It is like the Giant Antaeus,

who renewed his strength by touching the earth."

* Ball, loc. cit. p. 261.
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